力的分解:在进行力的分解时,只能求解:已知合力及两个分力的方向,求两分力的大小;已知合力及两分力的方向,求两分力的大小. ①图解法:用力的合成的平行四边形定则的逆过程求解. 正交分解法:适用于将一个已知力分解在互相垂直的两个方向上.如图4所示. 力的正交分解的典型例子: 如图5所示,质量物体为m的物体位于水平面 上,受到一个与水平面成θ角的斜向上方的力作 用而保持向右匀速直线运动,则有 N=mg+Fsinθ f= 如图6所示,一物体质量为m位于顷角为θ的斜 面上,保持静止,则有 f=mgsinθ N=mgcosθ C.如图7所示,一根细绳水平拉住 一个电灯,电线与竖直线的夹角为 θ,电灯保持静止.则有: T1=T2sinθ, T2cosθ=mg 第二章 直线运动 运动的基本概念: 机械运动:一个物体相对于别的物体位置的变动. 参考系:为了研究物体的运动,首先假定为不动的物体或物体系.同一物体的运动,选择不同的参考系,描述的结果可能不同. 质点:用来代替物体的有质量而无大小的点. 位移(s):从初始位置到末位置的有向线段.是描述物体位置变化大小的物理量,它是矢量. 路程:物体运动轨迹的长度,它是标量. 时间和时刻:时间是一段,而时刻是一点. 直线运动:物体沿着直线的运动: 曲线运动:物体沿着曲线的运动. 注意:①只有当物体上各点的运动情况都相同或物体上有运动情况不同的点,但不影响物体的整体运动时,才能把物体看成质点. ②位移与路程的区别与联系:位移是矢量,而路程是标量,只有在单方向直线运动中,路程才等于位移的大小. 运动的描述: 物理量描述: 位置变动的描述--位移s. 运动快慢的描述--速度v:物体的位移跟发生这段位移所用时间的比.即v=,在国际单位 制中速度的单位是m/s,非国际单位还有cm/s,km/h等. 平均速度:=,它粗略地描述了物体的平均运动快慢,是物体在一段位移或一段时间内的平均运动快慢.平均速度跟时间对应. 瞬时速度:是指物体在运动过程中经过某一点或某一时间的运动快慢.它精确地描述了物体在某一点或某一时刻的运动快慢.瞬时速度跟时刻对应. 速度变化快慢的描述--加速度a:在变速运动中,物体速度变化跟所用时间的比.即a==,在国际单位制中的单位为m/s2,它是一个矢量,其方向就是速度变化的方向. 图像描述:①位移图像(s-t):表示物体运动过程中位移随时间变化关系的图像.在位移图像中,横坐标表示时间t,纵坐标表示 位移s .如图1中,水平直线a 表示物体 在离原点s1处静止不动;倾斜直线b表示 物体从原点开始以速度v=tgθ做匀速直线 运动;直线c表示物体从离原点s0处开始 以速度v=tgα做匀速直线运动;直线d表 示物体从离原点s2处开始以速度v=tgβ向 原点方向做匀速直线运动,t0时刻到达原点; 曲线e表示物体做变速运动;直线f在位移 图像中无意义. 速度图像(v-t):表示物体在运动过程中速度随时间变化关系的图像,速度图像中纵坐标表示物体运动的速度,横坐标表示物体 运动的时间.如图2所示,直线a表示物体 以速度v1做匀速直线运动;倾斜直线b表示 物体做初速度为0,加速度为a=tgθ的匀加 速直线运动;直线c表示物体以初速度v1,加 速度a=tgα做匀加速直线运动;直线d表 示物体以初速度v2,加速度a=tgβ做匀减速 直线运动,t0时刻速度达到0;曲线e表示物 体做变速运动;直线f在速度图像中无意义. 两种直线运动: 匀速直线运动: 物体做直线运动,如果在任何相等的时间内经过和位移都相等,则这个物体的运动就叫做匀速直线运动. 匀速直线运动的特征:速度的大小和方向都恒定不变,加速度为零(a=0). 匀变速直线运动: 物体做直线运动,如果在任何相等的时间内速度的变化都相等,则这个物体的运动就叫做匀变速直线运动. 匀变速直线运动的特征:速度的大小随时间变化,加速度的大小和方向都不变 . 匀变速直线运动的规律:如果物体的初速度为v0,t秒的速度为vt,经过的位移为s,加速度为a,则 vt=v0+at s = v0t+at2 vt2-v02 = 2as = = v v=≠v 当初速度为0 时,vt=at s = at2 vt2 = 2as 推论:A.初速度为0的匀加速直线运动的物体的速度与时间成正比,即v1:v2=t1:t2 B. 初速度为0的匀加速直线运动的物体的位移与时间的平方成正比,即s1:s2=t12:t22 C. 初速度为0的匀变速直线运动的物体在连续相同的时间内位移之比为奇数比,即s1:s2:s3=1:3:5 D.匀变速直线运动的物体在连续相邻相同的时间间隔内位移之差为常数,刚好等于加速度和时间间隔平方和乘积,即 E.初速度为0的匀加速直线运动的物体经历连续相同的位移所需时间之比为1: :-- F.将匀减速直线运动等效地看成反向的初速度为0的匀加速直线运动,有时对解题委方便. ④自由落体运动:不计空气阻力,物体只受重力以初速度为0开始从某一高度自由下落的运动.其特征为:v0=o, a = g,是初速度为0,加速度为g的匀加速直线运动.其规律为:vt = gt h = gt2 vt2 = 2gh 竖直上抛运动:不计空气阻力,物体只受重力以一定的初速沿竖直向上的方向抛出,物体所做的运动叫做竖直上抛运动.其特征为:v0≠0,a=g,是初速度不为0的匀变速直线运动.其规律为:vt=v0-gt h=v0t-gt2 vt2-v02=-2gh 上升的最大高度为hm= ,上升时间和下落时间相等,等于. 竖直上抛运动可分为两段处理,上升过程看成是匀减速直线运动,下落过程看成是自由落体运动. 第三章牛顿运动定律 牛顿第一定律 牛顿第一定律:一切物体总保持匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止. 牛顿第一定律说明:①一切物体在不受力时总是保持匀速直线运动或静止状态是指物体;②当有外力作用在物体上时,物体的运动状态就会改变,即从静止到运动或从运动到静止,或从某一速度到另一速度,因此,力是改变物体运动状态的原因;③改变运动状态,即是改变速度,所以运动状态的改变就是速度的改变. 惯性:①惯性是物体保持静止或匀速直线运动的性质.由于一切物体在不受力时都保持静止或匀速直线运动,所以惯性是一切物体都有具有的.②惯性只跟物体的质量有关,跟物体的运动与否,速度大小无关.物体的质量越大惯性越大,所以质量是物体惯性大小的量度. 牛顿第二定律: 内容:物体的加速度,跟物体所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟外力的合力方向一致.其数学表达式为∑F=ma . 应用:①力学单位单位制:基本单位:长度:m 质量:kg 时间:s 导出单位:根据基本单位导出的单位.如:根据v=s/t,速度的单位为m/s,加速度的单位为m/s2 力的单位为:N,1N=1kg?m/s ②利用牛顿第二定律解题的类型及步骤: 已知受力求运动:a.利用隔离法对物体进行受力分析;b.求出合力;c.根据牛顿第二定律求出加速度;d.根据匀变速直线运动的规律求其它运动量. 已知运动求力:a.根据匀变速直线运动规律求出加速度;b.根据牛顿第二定律求出加速度;c.作物体的受力分析图;d.根据合力与分力的关系求出其它力. 超重和失重: 超重:当物体加速上升或减速下降时,物体对支持物的压力或对悬挂物的拉力大于物体所受重力的现象.即 N(或T)=mg + ma. 失重:当物体加速下降或减速上升时物体对支持物的压力或对悬挂物的拉力小于物体所受重力的现象.即 N(或T)=mg - ma. 惯性系和非惯性系,牛顿运动定律的适用范围: 惯性系和非惯性系:能使牛顿运动定律成立的参考系.不能使牛顿运动定律成立的参考系.在惯性系中可以直接运用牛顿第二定律进行计算,而在非惯性系中为了使牛顿第二定律成立,必须加一个假想的惯性力,F=-ma,其方向与非惯性系的加速度的方向相反. 牛顿运动定律的适用范围:牛顿运动定律只适用于宏观物体的低速问题,而不适用于微观粒子和高速运动的物体. 查看更多

 

题目列表(包括答案和解析)

解答应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.

某兴趣小组对一辆自制遥控小车的性能进行研究.他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为vt图象,如图所示(除2 s-10 s时间段图象为曲线外,其余时间段图象均为直线).已知在小车运动的过程中,2 s-14 s时间段内小车的功率保持不变,在14 s末停止遥控而让小车自由滑行,小车的质量为1.0 kg,可认为在整个运动过程中小车所受到的阻力大小不变.求:

(1)小车所受到的阻力大小;

(2)小车匀速行驶阶段的功率;

(3)小车在加速运动过程中位移的大小.

查看答案和解析>>

计算题.解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题答案中必须明确写出数值和单位.

铁路转弯处的弯道半径r是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h的设计不仅与r有关,还取决于火车在弯道上的行驶速率.下图表格中是铁路设计人员技术手册中弯道半径r及与之对应的轨道的高度差h

(1)根据表中数据,试导出hr关系的表达式,并求出当r=550 m时,h的设计值;

(2)铁路建成后,火车通过弯道时,为保证绝对安全,要求内外轨道均不向车轮施加侧向压力,又已知我国铁路内外轨的间距设计值为L=1435 mm,结合表中数据,算出我国火车的转弯速率v(g=9.8 m/s,以km/h为单位,结果取整数;路轨倾角很小时,正弦值按正切值处理)

(3)随着人们生活节奏加快,对交通运输的快捷提出了更高的要求.为了提高运输力,2007年4月18日铁道部将对铁路进行第六次大面积提速,这就要求铁路转弯速率也需要提高.请根据上述计算原理和上述表格分析提速时应采取怎样的有效措施?

查看答案和解析>>

按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.

如图所示,两个几何形状完全相同的平行板电容器PQ和MN,竖直置于区域足够大的水平方向匀强磁场中,两电容器极板上端和下端分别在同一水平线上.已知P、Q和M、N板间距都是d,板间电压都是U,极板长度均为l.今有一电子从极板边缘的O点以速度v0沿P、Q两板间的中心线进入并匀速直线运动穿过电容器,此后经过磁场偏转又沿竖直方向进入并匀速直线运动穿过电容器M、N板间,穿过M、N板间电场后,再经过磁场偏转又通过O点沿竖直方向进入电容器P、Q极板间,循环往复.已知电子质量为m,电量为e,重力不计.

(1)Q板和M板间的距离x满足什么条件时,能够达到题述过程的要求?

(2)电子从O点出发至第一次返回到O点经过了多长时间?

查看答案和解析>>

(Ⅰ)小明同学在学完力的合成与分解后,想在家里做实验验证力的平行四边形定则.他从学校的实验室里借来两只弹簧测力计,按如下步骤进行实验.
A.在墙上贴一张白纸用来记录弹簧弹力的大小和方向.
B.在一只弹簧测力计的下端悬挂一装满水的水杯,记下静止时弹簧测力计的读数F.
C.将一根大约30cm长的细线从杯带中穿过,再将细线两端拴在两只弹簧测力计的挂钩上.在靠近白纸处用手对称地拉开细线,使两只弹簧测力计的读数相等,在白纸上记下细线的方向和弹簧测力计的读数,如图甲所示.
D.在白纸上按一定标度作出两个弹簧测力计的弹力的图示,如图乙所示,根据力的平行四边形定则可求出这两个力的合力F′.

(1)在步骤C中,弹簧测力计的读数为
3.00
3.00
N.
(2)在步骤D中,合力F′=
5.2
5.2
N.  
(3)若
F′近似在竖直方向,且数值与F近似相等
F′近似在竖直方向,且数值与F近似相等
,就可以验证力的平行四边形定则.
(Ⅱ)发光晶体二极管是用电器上做指示灯用的一种电子元件.它的电路符号如图(甲)所示,正常使用时,带“+”号的一端接高电势,“-”的一端接低电势.某同学用实验方法测得它的两端的电压U和通过它的电流I的关系数据如表所示.
U/V 0 0.4 0.8 1.2 1.6 2.0 2.4 2.6 2.8 3.0
I/mA 0 0.9 2.3 4.3 6.8 12.0 19.0 24.0 30.0 37.0
①在图(乙)中的虚线框内画出该同学的实验电路图.(实验用仪器:电压表:内阻RV约为10kΩ,电流表mA:内阻RmA约为100Ω,直流电源,滑动变阻器,开关,导线若干.)
②在图(丙)中的小方格纸上用描点法画出二极管的伏安特性曲线.
③若发光二极管的最佳工作电压为2.5V,而电源是由内阻不计、电动势为3V的供电系统提供的.请根据所画出的伏安特性曲线上的信息,分析应该串联一个阻值
25
25
Ω电阻再与电源接成闭合电路,才能使二极管工作在最佳状态.(结果保留二位有效数字)

查看答案和解析>>


同步练习册答案