[碰撞问题的三原则] 如图所示.A.B两小球在光滑水平面上分别以动量p1=4 kg·m/s和p2=6 kg·m/s做匀速直线运动.则在A球追上B球并与之碰撞的过程中.两小球的动量变化量Δp1和Δp2可能分别为 A.-2 kg·m/s,3 kg·m/s B.-8 kg·m/s,8 kg·m/s C.1 kg·m/s,-1 kg·m/s D.-2 kg·m/s,2 kg·m/s 查看更多

 

题目列表(包括答案和解析)

精英家教网(1)在用双缝干涉测光的波长的实验中,请按照题目要求回答下列问题.
①某同学用双缝干涉装置来测量红光的波长.实验时,若经粗调后透过测量头上的目镜观察,看不到明暗相间的条纹,只看到一片亮区,造成这种情况的最可能的原因是
 

②将测量头的分划板中心刻线与某条亮纹中心对齐,将该亮纹定为第1条亮纹,此时手轮上的示数如图甲所示.然后同方向转动测量头,使分划板中心刻线与第6条亮纹中心对齐,手轮上的示数如图乙所示,则相邻亮纹的间距△x为
 
mm.
③为增加相邻亮纹(暗纹)间的距离,可采取
 
 
的方法.
(2)用半径相同的小球1和小球2的碰撞验证动量守恒定律,实验装置如图所示,斜槽与水平槽圆滑连接.安装好实验装置,在地上铺一张白纸,白纸上铺放复写纸,记下重锤线所指的位置O.接下来的实验步骤如下:
步骤1:不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上.重复多次,用尽可能小的圆,把小球的所有落点圈在里面,认为其圆心就是小球落点的平均位置;精英家教网
步骤2:把小球2放在斜槽前端边缘处的C点,让小球1从A点由静止滚下,使它们碰撞.重复多次,并使用与步骤1同样的方法分别标出碰撞后两小球落点的平均位置;
步骤3:用刻度尺分别测量三个落地点的平均位置M、P、N离O点的距离,即线段OM、OP、ON的长度.
①在上述实验操作中,下列说法正确的是
 

    A.小球1的质量一定大于球2的质量,小球1的半径可以大于小球2的半径
    B.将小球静止放置在轨道末端看小球是否滚动来检测斜槽轨道末端是否水平
    C.小球在斜槽上的释放点应该越高越好,可样碰前的速度大,测量误差会小
    D.复写纸铺在白纸的上面,实验过程中复写纸可以随时拿起看印迹是否清晰并进行移动
②以下提供的器材中,本实验必需的有
    A.刻度尺       B.游标卡尺            C.天平          D.秒表
③设球1的质量为m1,球2的质量为m2,MP的长度为l1,ON的长度为l2,则本实验验证动量守恒定律的表达式为
 
,即说明两球碰撞遵守动量守恒定律.
④完成实验后,实验小组对上述装置进行了如图所示的改变:
精英家教网
(I)在木板表面先后钉上白纸和复写纸,并将木板竖直立于靠近槽口处,使小球A从斜槽轨道上某固定点C由静止释放,撞到木板并在白纸上留下痕迹O;
(II)将木板向右平移适当的距离固定,再使小球A从原固定点C由静止释放,撞到木板上得到痕迹P;
(III)把半径相同的小球B 静止放在斜槽轨道水平段的最右端,让小球A仍从原固定点由静止开始滚下,与小球B 相碰后,两球撞在木板上得到痕迹 M和 N;
(IV)用刻度尺测量纸上O点到M、P、N 三点的距离分别为y1、y2、y3.请你写出用直接测量的物理量来验证两球碰撞过程中动量守恒的表达式:
 
.(小球A、B的质量分别为m1、m2

查看答案和解析>>

第七部分 热学

热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。

一、分子动理论

1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)

对于分子(单原子分子)间距的计算,气体和液体可直接用,对固体,则与分子的空间排列(晶体的点阵)有关。

【例题1】如图6-1所示,食盐(NaCl)的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3kg/mol,密度为2.2×103kg/m3,阿伏加德罗常数为6.0×1023mol-1,求食盐晶体中两个距离最近的钠离子中心之间的距离。

【解说】题意所求即图中任意一个小立方块的变长(设为a)的倍,所以求a成为本题的焦点。

由于一摩尔的氯化钠含有NA个氯化钠分子,事实上也含有2NA个钠离子(或氯离子),所以每个钠离子占据空间为 v = 

而由图不难看出,一个离子占据的空间就是小立方体的体积a3 ,

即 a3 =  = ,最后,邻近钠离子之间的距离l = a

【答案】3.97×10-10m 。

〖思考〗本题还有没有其它思路?

〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有×8个离子 = 分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。)

2、物质内的分子永不停息地作无规则运动

固体分子在平衡位置附近做微小振动(振幅数量级为0.1),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s)。

无论是振动还是迁移,都具备两个特点:a、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b、剧烈程度和温度相关。

气体分子的三种速率。最可几速率vP :f(v) = (其中ΔN表示v到v +Δv内分子数,N表示分子总数)极大时的速率,vP == ;平均速率:所有分子速率的算术平均值, ==;方均根速率:与分子平均动能密切相关的一个速率,==〔其中R为普适气体恒量,R = 8.31J/(mol.K)。k为玻耳兹曼常量,k =  = 1.38×10-23J/K 〕

【例题2】证明理想气体的压强P = n,其中n为分子数密度,为气体分子平均动能。

【证明】气体的压强即单位面积容器壁所承受的分子的撞击力,这里可以设理想气体被封闭在一个边长为a的立方体容器中,如图6-3所示。

考查yoz平面的一个容器壁,P =            ①

设想在Δt时间内,有Nx个分子(设质量为m)沿x方向以恒定的速率vx碰撞该容器壁,且碰后原速率弹回,则根据动量定理,容器壁承受的压力

 F ==                            ②

在气体的实际状况中,如何寻求Nx和vx呢?

考查某一个分子的运动,设它的速度为v ,它沿x、y、z三个方向分解后,满足

v2 =  +  + 

分子运动虽然是杂乱无章的,但仍具有“偶然无序和统计有序”的规律,即

 =  +  +  = 3                    ③

这就解决了vx的问题。另外,从速度的分解不难理解,每一个分子都有机会均等的碰撞3个容器壁的可能。设Δt = ,则

 Nx = ·3N = na3                         ④

注意,这里的是指有6个容器壁需要碰撞,而它们被碰的几率是均等的。

结合①②③④式不难证明题设结论。

〖思考〗此题有没有更简便的处理方法?

〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z这6个方向运动(这样造成的宏观效果和“杂乱无章”地运动时是一样的),则 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子间存在相互作用力(注意分子斥力和气体分子碰撞作用力的区别),而且引力和斥力同时存在,宏观上感受到的是其合效果。

分子力是保守力,分子间距改变时,分子力做的功可以用分子势能的变化表示,分子势能EP随分子间距的变化关系如图6-4所示。

分子势能和动能的总和称为物体的内能。

二、热现象和基本热力学定律

1、平衡态、状态参量

a、凡是与温度有关的现象均称为热现象,热学是研究热现象的科学。热学研究的对象都是有大量分子组成的宏观物体,通称为热力学系统(简称系统)。当系统的宏观性质不再随时间变化时,这样的状态称为平衡态。

b、系统处于平衡态时,所有宏观量都具有确定的值,这些确定的值称为状态参量(描述气体的状态参量就是P、V和T)。

c、热力学第零定律(温度存在定律):若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。

2、温度

a、温度即物体的冷热程度,温度的数值表示法称为温标。典型的温标有摄氏温标t、华氏温标F(F = t + 32)和热力学温标T(T = t + 273.15)。

b、(理想)气体温度的微观解释: = kT (i为分子的自由度 = 平动自由度t + 转动自由度r + 振动自由度s 。对单原子分子i = 3 ,“刚性”〈忽略振动,s = 0,但r = 2〉双原子分子i = 5 。对于三个或三个以上的多原子分子,i = 6 。能量按自由度是均分的),所以说温度是物质分子平均动能的标志。

c、热力学第三定律:热力学零度不可能达到。(结合分子动理论的观点2和温度的微观解释很好理解。)

3、热力学过程

a、热传递。热传递有三种方式:传导(对长L、横截面积S的柱体,Q = K

查看答案和解析>>

(1)正电子发射计算机断层显像(PET)的基本原理是:将放射性同位素15 O注入人体,参与人体的代谢过程,15 O在人体内衰变放出正电子,与人体内负电子相遇而湮灭转化为一对光子,被探测器探测到,经计算机处理后产生清晰的图像,根据PET原理,回答下列问题。

①写出15 O的衰变和正负电子湮灭的方程式                          

②将放射性同位素15 O注入人体,15 O的主要用途是                  

A.利用它的射线   B.作为示踪原子

C.参与人体的代谢过程   D.有氧呼吸

③设电子的质量为m,所带电荷量为q,光速为c,普朗克常量为h,则探测到的正负电子湮灭后生成的光子的波长=                    

④PET中所选的放射性同位素的半衰期应                。(填“长”、“短”或“长短均可”)

(2)在原子核物理中,研究核子与核子关系的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似、两个小球A和B用轻质弹簧相连。在光滑水平直轨道上处于静止状态。在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图所示。C与B发生碰撞并立即结成一个整体D。在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰撞后A、D都静止不动,A与P接触而不粘连。过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失)。已知A、B、C三球的质量均为m。

    ①求弹簧长度刚被锁定后A球的速度。

②求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。

查看答案和解析>>

(1)(5分)正电子发射计算机断层显像(PET)的基本原理是:将放射性同位素15 O注入人体,参与人体的代谢过程,15 O在人体内衰变放出正电子,与人体内负电子相遇而湮灭转化为一对光子,被探测器探测到,经计算机处理后产生清晰的图像,根据PET原理,回答下列问题。

①写出15 O的衰变和正负电子湮灭的方程式                          

②将放射性同位素15 O注入人体,15 O的主要用途是                  

A.利用它的射线   B.作为示踪原子

C.参与人体的代谢过程   D.有氧呼吸

③设电子的质量为m,所带电荷量为q,光速为c,普朗克常量为h,则探测到的正负电子湮灭后生成的光子的波长=                    

④PET中所选的放射性同位素的半衰期应               。(填“长”、“短”或“长短均可”)

(2)(10分)在原子核物理中,研究核子与核子关系的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似、两个小球A和B用轻质弹簧相连。在光滑水平直轨道上处于静止状态。在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图所示。C与B发生碰撞并立即结成一个整体D。在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰撞后A、D都静止不动,A与P接触而不粘连。过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失)。已知A、B、C三球的质量均为m。

    ①求弹簧长度刚被锁定后A球的速度。

②求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。

 

查看答案和解析>>


同步练习册答案