题目列表(包括答案和解析)
(6分)判断以下说法的正误,请在相应的括号内打“”或“√”。
、扩散现象和布朗运动的剧烈程度都与温度有关,所以扩散现象和布朗运动也叫做热运动。( )
、两个分子甲和乙相距较远(此时它们之间的作用力可以忽略),设甲固定不动,乙逐渐向甲靠近,直到不能再靠近,在整个移动过程中前阶段分子力做正功,后阶段克服分子力做功。( )
、晶体熔化过程中,当温度达到熔点时,吸收的热量全部用来破坏空间点阵,增加分子势能,而分子平均动能却保持不变,所以晶体有固定的熔点。非晶体没有空间点阵,熔化时不需要去破坏空间点阵,吸收的热量主要转化为分子的动能,不断吸热,温度就不断上升。( )
、根据热力学第二定律可知,凡与热现象有关的宏观过程都具有方向性,在热传导中,热量只能自发地从高温物体传递给低温物体,而不能自发地从低温物体传递给高温物体。( )
、气体分子间的距离较大,除了相互碰撞或者跟器壁碰撞外,气体分子几乎不受力的作用而做匀速直线运动。分子的运动杂乱无章,在某一时刻,向各个方向运动的气体分子数目不均等。( )
、一由不导热的器壁做成的容器,被不导热的隔板分成甲、乙两室。甲室中装有一定质量的温度为的气体,乙室为真空,如图所示。提起隔板,让甲室中的气体进入乙室,若甲室中气体的内能只与温度有关,则提起隔板后当气体重新达到平衡时,其温度仍为。( )
选修3-3:
(1)判断以下说法正误,请在相应的括号内打“×”或“√”
A. 扩散现象和布朗运动的剧烈程度都与温度有关,所以扩散现象和布朗运动也叫做热运动。
B. 两个分子甲和乙相距较远(此时它们之间的作用力可以忽略),设甲固定不动,乙逐渐向甲靠近,直到不能再靠近,在整个移动过程中前阶段分子力做正功,后阶段外力克服分子力做功。
C. 晶体熔化过程中,当温度达到熔点时,吸收的热量全部用来破坏空间点阵,增加分子势能,而分子平均动能却保持不变,所以晶体有固定的熔点。非晶体没有空间点阵,熔化时不需要去破坏空间点阵,吸收的热量主要转化为分子的动能,不断吸热,温度就不断上升。
D. 根据热力学第二定律可知,凡与热现象有关的宏观过程都具有方向性,在热传导中,热量只能自发地从高温物体传递给低温物体,而不能自发地从低温物体传递给高温物体。
E. 气体分子间的距离较大,除了相互碰撞或者跟器壁碰撞外,气体分子几乎不受力的作用而做匀速直线运动。分子的运动杂乱无章,在某一时刻,向各个方向运动的气体分子数目不均等。
F. 一由不导热的器壁做成的容器,被不导热的隔板分成甲、乙两室。甲室中装有一定质量的温度为T的气体,乙室为真空,如下图所示。提起隔板,让甲室中的气体进入乙室,若甲室中气体的内能只与温度有关,则提起隔板后当气体重新达到平衡时,其温度仍为T。
(2)在下图所示的气缸中封闭着温度为100℃的空气,一重物用绳索经滑轮与缸中活塞相连接,重物和活塞均处于平衡状态,这时活塞离缸底的高度为10 cm,如果缸内空气变为0℃,问:
①重物是上升还是下降?
②这时重物将从原处移动多少厘米?(设活塞与气缸壁间无摩擦)
选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)
A.(选修模块3-3)(12分)
⑴下列说法中正确的是 ▲
A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力
B.扩散运动就是布朗运动
C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体
D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述
⑵将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是 ▲ m(保留一位有效数字).
⑶如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g.
①求活塞停在B点时缸内封闭气体的压强;
②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).
B.(选修3-4试题)
⑴(4分)下列说法正确的是 ▲
A.泊松亮斑有力地支持了光的微粒说,杨氏干涉实验有力地支持了光的波动说。
B.从接收到的高频信号中还原出所携带的声音或图像信号的过程称为解调
C.当波源或者接受者相对于介质运动时,接受者往往会发现波的频率发生了变化,这种现象叫多普勒效应。
D.考虑相对论效应,一条沿自身长度方向运动的杆,其长度总比杆静止时的长度小
⑵如图所示,真空中有一顶角为75o,折射率为n =的三棱镜.欲使光线从棱镜的侧面AB进入,再直接从侧面AC射出,求入射角θ的取值范围为 ▲ 。
⑶(4分) 一列向右传播的简谐横波在某时刻的波形图如图所示。波速大小为0.6m/s,P质点的横坐标x = 96cm。求:
①波源O点刚开始振动时的振动方向和波的周期;
②从图中状态为开始时刻,质点P第一次达到波峰时间。
C.(选修模块3-5)(12分)
⑴.氦原子被电离一个核外电子,形成类氢结构的氦离子。已知基态的氦离子能量为E1 =-54.4 eV,氦离子能级的示意图如图所示。在具有下列能量的光子中,不能被基态氦离子吸收的是 ▲
A.60.3 eV B. 51.0 eV
C.43.2 eV D.54.4 eV
⑵一个静止的,放出一个速度为2.22×107m/s的粒子,同时产生一个新核,并释放出频率为ν=3×1019Hz的γ光子。写出这种核反应方程式 ▲ ;这个核反应中产生的新核的速度为 ▲ ;因γ辐射而引起的质量亏损为 ▲ 。(已知普朗克常量h=6.63×10-34J·s)
⑶如图,滑块A、B的质量分别为m1与m2,m1<m2,置于光滑水平面上,由轻质弹簧相连接,用一轻绳把两滑块拉至最近,弹簧处于最大压缩状态后绑紧,接着使两滑块一起以恒定的速度v0向右滑动.运动中某时刻轻绳突然断开,当弹簧恢复到其自然长度时,滑块A的速度正好为零。则:
①弹簧第一次恢复到自然长度时,滑块B的速度大小为 ▲ ;
②从轻绳断开到弹簧第一次恢复到自然长度的过程中,弹簧释放的弹性势能Ep = ▲ 。
选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)
A.(选修模块3-3)(12分)
⑴下列说法中正确的是 ▲
A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力
B.扩散运动就是布朗运动
C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体
D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述
⑵将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是 ▲ m(保留一位有效数字).
⑶如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g.
①求活塞停在B点时缸内封闭气体的压强;
②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).
B.(选修3-4试题)
⑴(4分)下列说法正确的是 ▲
A.泊松亮斑有力地支持了光的微粒说,杨氏干涉实验有力地支持了光的波动说。
B.从接收到的高频信号中还原出所携带的声音或图像信号的过程称为解调
C.当波源或者接受者相对于介质运动时,接受者往往会发现波的频率发生了变化,这种现象叫多普勒效应。
D.考虑相对论效应,一条沿自身长度方向运动的杆,其长度总比杆静止时的长度小
⑵如图所示,真空中有一顶角为75o,折射率为n =的三棱镜.欲使光线从棱镜的侧面AB进入,再直接从侧面AC射出,求入射角θ的取值范围为 ▲ 。
⑶(4分) 一列向右传播的简谐横波在某时刻的波形图如图所示。波速大小为0.6m/s,P质点的横坐标x = 96cm。求:
①波源O点刚开始振动时的振动方向和波的周期;
②从图中状态为开始时刻,质点P第一次达到波峰时间。
C.(选修模块3-5)(12分)
⑴.氦原子被电离一个核外电子,形成类氢结构的氦离子。已知基态的氦离子能量为E1 =-54.4eV,氦离子能级的示意图如图所示。在具有下列能量的光子中,不能被基态氦离子吸收的是 ▲
A.60.3eV B. 51.0 eV
C.43.2eV D.54.4 eV
⑵一个静止的,放出一个速度为2.22×107m/s的粒子,同时产生一个新核,并释放出频率为ν=3×1019Hz的γ光子。写出这种核反应方程式 ▲ ;这个核反应中产生的新核的速度为 ▲ ;因γ辐射而引起的质量亏损为 ▲ 。(已知普朗克常量h=6.63×10-34J·s)
⑶如图,滑块A、B的质量分别为m1与m2,m1<m2,置于光滑水平面上,由轻质弹簧相连接,用一轻绳把两滑块拉至最近,弹簧处于最大压缩状态后绑紧,接着使两滑块一起以恒定的速度v0向右滑动.运动中某时刻轻绳突然断开,当弹簧恢复到其自然长度时,滑块A的速度正好为零。则:
①弹簧第一次恢复到自然长度时,滑块B的速度大小为 ▲ ;
②从轻绳断开到弹簧第一次恢复到自然长度的过程中,弹簧释放的弹性势能Ep = ▲ 。
第七部分 热学
热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。
一、分子动理论
1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)
对于分子(单原子分子)间距的计算,气体和液体可直接用,对固体,则与分子的空间排列(晶体的点阵)有关。
【例题1】如图6-1所示,食盐(NaCl)的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3kg/mol,密度为2.2×103kg/m3,阿伏加德罗常数为6.0×1023mol-1,求食盐晶体中两个距离最近的钠离子中心之间的距离。
【解说】题意所求即图中任意一个小立方块的变长(设为a)的倍,所以求a成为本题的焦点。
由于一摩尔的氯化钠含有NA个氯化钠分子,事实上也含有2NA个钠离子(或氯离子),所以每个钠离子占据空间为 v =
而由图不难看出,一个离子占据的空间就是小立方体的体积a3 ,
即 a3 = = ,最后,邻近钠离子之间的距离l = a
【答案】3.97×10-10m 。
〖思考〗本题还有没有其它思路?
〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有×8个离子 = 分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。)
2、物质内的分子永不停息地作无规则运动
固体分子在平衡位置附近做微小振动(振幅数量级为0.1),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s)。
无论是振动还是迁移,都具备两个特点:a、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b、剧烈程度和温度相关。
气体分子的三种速率。最可几速率vP :f(v) = (其中ΔN表示v到v +Δv内分子数,N表示分子总数)极大时的速率,vP == ;平均速率:所有分子速率的算术平均值, ==;方均根速率:与分子平均动能密切相关的一个速率,==〔其中R为普适气体恒量,R = 8.31J/(mol.K)。k为玻耳兹曼常量,k = = 1.38×10-23J/K 〕
【例题2】证明理想气体的压强P = n,其中n为分子数密度,为气体分子平均动能。
【证明】气体的压强即单位面积容器壁所承受的分子的撞击力,这里可以设理想气体被封闭在一个边长为a的立方体容器中,如图6-3所示。
考查yoz平面的一个容器壁,P = ①
设想在Δt时间内,有Nx个分子(设质量为m)沿x方向以恒定的速率vx碰撞该容器壁,且碰后原速率弹回,则根据动量定理,容器壁承受的压力
F == ②
在气体的实际状况中,如何寻求Nx和vx呢?
考查某一个分子的运动,设它的速度为v ,它沿x、y、z三个方向分解后,满足
v2 = + +
分子运动虽然是杂乱无章的,但仍具有“偶然无序和统计有序”的规律,即
= + + = 3 ③
这就解决了vx的问题。另外,从速度的分解不难理解,每一个分子都有机会均等的碰撞3个容器壁的可能。设Δt = ,则
Nx = ·3N总 = na3 ④
注意,这里的是指有6个容器壁需要碰撞,而它们被碰的几率是均等的。
结合①②③④式不难证明题设结论。
〖思考〗此题有没有更简便的处理方法?
〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z这6个方向运动(这样造成的宏观效果和“杂乱无章”地运动时是一样的),则 Nx =N总 = na3 ;而且vx = v
所以,P = = ==nm = n
3、分子间存在相互作用力(注意分子斥力和气体分子碰撞作用力的区别),而且引力和斥力同时存在,宏观上感受到的是其合效果。
分子力是保守力,分子间距改变时,分子力做的功可以用分子势能的变化表示,分子势能EP随分子间距的变化关系如图6-4所示。
分子势能和动能的总和称为物体的内能。
二、热现象和基本热力学定律
1、平衡态、状态参量
a、凡是与温度有关的现象均称为热现象,热学是研究热现象的科学。热学研究的对象都是有大量分子组成的宏观物体,通称为热力学系统(简称系统)。当系统的宏观性质不再随时间变化时,这样的状态称为平衡态。
b、系统处于平衡态时,所有宏观量都具有确定的值,这些确定的值称为状态参量(描述气体的状态参量就是P、V和T)。
c、热力学第零定律(温度存在定律):若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。
2、温度
a、温度即物体的冷热程度,温度的数值表示法称为温标。典型的温标有摄氏温标t、华氏温标F(F = t + 32)和热力学温标T(T = t + 273.15)。
b、(理想)气体温度的微观解释: = kT (i为分子的自由度 = 平动自由度t + 转动自由度r + 振动自由度s 。对单原子分子i = 3 ,“刚性”〈忽略振动,s = 0,但r = 2〉双原子分子i = 5 。对于三个或三个以上的多原子分子,i = 6 。能量按自由度是均分的),所以说温度是物质分子平均动能的标志。
c、热力学第三定律:热力学零度不可能达到。(结合分子动理论的观点2和温度的微观解释很好理解。)
3、热力学过程
a、热传递。热传递有三种方式:传导(对长L、横截面积S的柱体,Q = KSΔ
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com