11.[解析] (1)设卫星的质量为m.地球的质量为M 在地球表面附近满足G=mg 得GM=R2g① 卫星做圆周运动的向心力等于它受到的万有引力 m=G② ①式代入②式.得到v1=. (2)考虑①式.卫星受到的万有引力为 F=G=③ 由牛顿第二定律F=m(R+h)④ 联立③④式解得T= . [答案] (1)v1= (2) 查看更多

 

题目列表(包括答案和解析)

解析 (1)设木板第一次上升过程中,物块的加速度为a物块,由牛顿第二定律kmgsin θmgsin θma物块

解得a物块=(k-1)gsin θ,方向沿斜面向上

(2)设以地面为零势能面,木板第一次与挡板碰撞时的速度大小为v1

由机械能守恒得:×2mv=2mgH

解得v1

设木板弹起后的加速度为a,由牛顿第二定律得:

a=-(k+1)gsin θ

木板第一次弹起的最大路程s1

木板运动的路程s+2s1

(3)设物块相对木板滑动距离为L

根据能量守恒mgHmg(HLsin θ)=kmgLsin θ

摩擦力对木板及物块做的总功W=-kmgLsin θ

解得W=-

答案 (1)(k-1)gsin θ;方向沿斜面向上

(2) (3)-

查看答案和解析>>

解析 (1)小球从曲面上滑下,只有重力做功,由机械能守恒定律知:

mghmv                                                       ①

v0 m/s=2 m/s.

(2)小球离开平台后做平抛运动,小球正好落在木板的末端,则

Hgt2                                                                                                                                                     

v1t                                                                                                               

联立②③两式得:v1=4 m/s

设释放小球的高度为h1,则由mgh1mv

h1=0.8 m.

(3)由机械能守恒定律可得:mghmv2

小球由离开平台后做平抛运动,可看做水平方向的匀速直线运动和竖直方向的自由落体运动,则:

ygt2                                                                                                                                                      

xvt                                                                                                                      

tan 37°=                                                                                                         

vygt                                                                                                                     

vv2v                                                       ⑧

Ekmv                                                      ⑨

由④⑤⑥⑦⑧⑨式得:Ek=32.5h                                                                      

考虑到当h>0.8 m时小球不会落到斜面上,其图象如图所示

答案 (1)2 m/s (2)0.8 m (3)Ek=32.5h 图象见解析

查看答案和解析>>

解析 (1)整个装置沿斜面向上做匀速运动时,即整个系统处于平衡状态,

则研究A物体:fmAgsin θ=2 N,

研究整体:F=(mAmB)gsin θμ2(mAmB)gcos θ=21 N.

(2)整个装置沿斜面向上做匀加速运动,且AB恰好没有相对滑动,则说明此时AB之间恰好达到最大静摩擦力,

研究A物体:

fmaxfμ1mAgcos θ=2.4 N,

fmaxmAgsin θmAa

解得a=1 m/s2

研究整体:F-(mAmB)gsin θμ2(mAmB)gcos θ=(mAmB)a

解得F=23.4 N.

答案 (1)2 N 21 N (2)2.4 N 23.4 N

查看答案和解析>>

解析 (1)如图所示,画出通过P1P2的入射光线,交AC面于O,画出通过P3P4的出射光线交AB面于O′.则光线OO′就是入射光线P1P2在三棱镜中的折射光线.

(2)在所画的图上注明入射角θ1和折射角θ2,并画出虚线部分,用量角器量出θ1θ2(或用直尺测出线段EFOEGHOG的长度).

(3)n;(或因为sin θ1,sin θ2

n).

答案 见解析

 


查看答案和解析>>

如图甲所示,是证实玻尔关于原子存在分立能态的一种实验装置的原理示意图.由电子枪A射出的电子,射入一容器B中,其中有氦气.电子在O点与氦原子发生碰撞后,进入速度选择器C,然后进入检测装置D中.

  速度选择器由两个同心的圆弧形电极P1P2组成,当两极间加有电压U时,只允许具有确定能量的电子通过,并进入检测装置D,由检测装置测出电子产生的电流I,改变电压U,同时测出I的数值,即可确定碰撞后进入速度选择器的电子的能量分布.为简单起见,设电子与原子碰撞前,原子是静止的.原子质量比电子质量大很多,碰撞后,原子虽然稍微被碰动,但忽略这一能量损失,设原子未动,当电子与原子发生弹性碰撞时,电子改变运动方向,但不损失动能.当发生非弹性碰撞时,电子损失的动能传给原子,使原子内部的能量增大.

  (1)设速度选择器两极间的电压为U时,允许通过的电子的动能为Ek,试求出EkU的函数关系式.设通过选择器的电子的轨道半径r=20.0cm,电极P1P2的间隔为d=1.0cm,两极间的场强大小处处相等.

  (2)当电子枪射出电子的动能Ek0=50.0eV时,改变电压U,测出电流I,得出如图乙所示的U-I图像,电流出现峰值.试求各个峰值电流对应的电子的动能.

  (3)根据实验结果能确定氦原子的几个激发态?各激发态的能级为多少?设基态的能级E1=0.

查看答案和解析>>


同步练习册答案