(2013?长宁区三模)小明看到教室里日光灯(如图1所示)的悬挂结构后,心想“悬挂日光灯的两根悬线受到的拉力的大小是不是相等?”由于不能直接测量悬线拉力,于是他和小华选择替代器材进行了探究,他们将一根长为1米的轻质木杆(重力可以忽略不计)的两端用竖直细线水平悬挂起来,并在细线上方用两个力传感器测出细线受到的拉力F
1和F
2.接着将钩码挂在两细线之间的木杆上(如图2所示),作为木杆受到的竖直向下的拉力F,并将两细线受到的拉力F
1、F
2和拉力F的作用点的位置记录在表格中.
实验序号 |
拉力F作用点据左侧细线悬挂点距离△s |
木杆受到向下的拉力F(牛) |
左侧细线受到木杆对它的拉力F1(牛) |
右侧细线受到木杆对它的拉力F2(牛) |
1 |
0.3 |
10.0 |
7.0 |
3.0 |
2 |
0.3 |
20.0 |
14.0 |
6.0 |
3 |
0.3 |
30.0 |
21.0 |
9.0 |
4 |
0.4 |
10.0 |
6.0 |
4.0 |
5 |
0.4 |
20.0 |
12.0 |
8.0 |
6 |
0.4 |
30.0 |
18.0 |
12.0 |
7 |
0.5 |
10.0 |
5.0 |
5.0 |
8 |
0.5 |
20.0 |
10.0 |
10.0 |
9 |
0.5 |
30.0 |
15.0 |
15.0 |
①分析比较实验序号1、2与3或4、5与6或7、8与9中F
1和F的关系及相关条件,可得出的初步结论是:轻质木杆的两端用竖直细线水平悬挂起来,受到的竖直向下的拉力作用点的位置不变,左侧细线受到木杆对它的拉力F
1与
木杆受到向下的拉力F成正比
木杆受到向下的拉力F成正比
.
②分析比较实验序号1、4与7或2、5与8或3、6与9中F
1和△s的关系及相关条件,可得出的初步结论是:轻质木杆的两端用竖直细线水平悬挂起来,受到的竖直向下的拉力F大小不变,
拉力F作用点距左侧细线悬挂点距离△s越大,左侧细线受到木杆对它的拉力F1越小
拉力F作用点距左侧细线悬挂点距离△s越大,左侧细线受到木杆对它的拉力F1越小
.
③请进一步综合分析表中的相关数据,并归纳得出结论.
(a)分析比较实验序号7与8与9中F
1、F
2与△s的关系及相关条件,可得出的初步结论是:当竖直向下的拉力作用点位于水平木杆两竖直细线的中点处时,
左侧细线受到木杆对它的拉力F1与右侧细线受到木杆对它的拉力F2相等
左侧细线受到木杆对它的拉力F1与右侧细线受到木杆对它的拉力F2相等
.
(b)分析比较实验序号1~9中拉力F与F
1和F
2的关系及相关条件,可得出的初步结论是:轻质木杆的两端用竖直细线水平悬挂起来,
木杆受到向下的拉力F等于左侧细线受到木杆对它的拉力F1与右侧细线受到木杆对它的拉力F2的和
木杆受到向下的拉力F等于左侧细线受到木杆对它的拉力F1与右侧细线受到木杆对它的拉力F2的和
.
(4)分析表格中的数据后,小华认为:轻质木杆的两端用竖直细线水平悬挂起来,左侧细线受到木杆对它的拉力F
1总是大于或等于右侧细线受到木杆对它的拉力F
2,小明认为该结论是错误的,若要证明小明的观点,你认为还研究拉力F作用点距左侧细线悬挂点距离△s在
0.5~1
0.5~1
米范围内,F
1与F
2之间的大小关系.
⑤“悬挂日光灯的两根悬线受到的拉力的大小是不是相等?”请你结合重心相关知识及上述有关结论对该问题进行分析.
若重心在灯的中点,则左右两边的拉力相等;若重心不在中点,则拉力不相等,且重心靠近哪边,哪边的拉力较大
若重心在灯的中点,则左右两边的拉力相等;若重心不在中点,则拉力不相等,且重心靠近哪边,哪边的拉力较大
.