在地面附近有两个物体受到的重力之比是1:2.则它们的质量之比是 . 查看更多

 

题目列表(包括答案和解析)

读下面材料,回答有关问题:
地球表面附近的物体,在仅受重力作用时具有的加速度叫做重力加速度,也叫自由落体加速度,用g表示.在自由落体运动时,g=a,重力加速度g值的准确测定对于计量学、精密物理计量、地球物理学、地震预报、重力探矿和空间科学等都具有重要意义.
最早测定重力加速度的是伽利略.约在1590年,他利用倾角为θ的斜面将g的测定改为测定微小加速度a=gsinθ,如图1.1784年,G?阿特武德将质量同为M的重物用绳连接后,挂在光滑的轻质滑轮上,再在另一个重物上附加一重量小得多的重物m,如图,使其产生一微小加速度a=mg/(2M+m),测得a后,即可算出g.
1888年,法国军事测绘局使用新的方法进行了g值的计量.它的原理简述为:若一个物体如单摆那样以相同的周期绕两个中心摆动,则两个中心之间的距离等于与上述周期相同的单摆的长度.当时的计量结果为:g=9.80991m/s2
1906年,德国的库能和福脱万勒用相同的方法在波茨坦作了g值的计量,作为国际重力网的参考点,即称为“波茨坦重力系统”的起点,其结果为g(波茨坦)=9.81274m/s2
根据波茨坦得到的g值可以通过相对重力仪来求得其他地点与它的差值,从而得出地球上各地的g值,这样建立起来的一系列g值就称为波茨坦重力系统.国际计量局在1968年10月的会议上推荐,自1969年1月1日起,g(波茨坦)减小到9.81260m/s2.(粗略计算时g=10N/m2
(1)月球表面上的重力加速度为地球表面上的重力加速度的1/6,同一个飞行器在月球表面上时与在地球表面上时相比较[]
A.惯性减小为
1
6
,重力不变.
B.惯性和重力都减小为
1
6

C.惯性不变,重力减小为
1
6

D.惯性和重力都不变.
(2)如图所示,在两根轻质弹簧a、b之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同一竖直线上的两点,等小球静止后,突然撤去弹簧a,则在撤去弹簧后的瞬间,小球加速度的大小为2.5米/秒2,若突然撤去弹簧b,则在撤去弹簧后的瞬间,小球加速度的大小可能(  )
A.7.5米/秒2,方向竖直向下
B.7.5米/秒2,方向竖直向上
C.12.5米/秒2,方向竖直向下
D.12.5米/秒2,方向竖直向上.

查看答案和解析>>

读下面材料,回答有关问题:
地球表面附近的物体,在仅受重力作用时具有的加速度叫做重力加速度,也叫自由落体加速度,用g表示.在自由落体运动时,g=a,重力加速度g值的准确测定对于计量学、精密物理计量、地球物理学、地震预报、重力探矿和空间科学等都具有重要意义.
最早测定重力加速度的是伽利略.约在1590年,他利用倾角为θ的斜面将g的测定改为测定微小加速度a=gsinθ,如图1.1784年,G?阿特武德将质量同为M的重物用绳连接后,挂在光滑的轻质滑轮上,再在另一个重物上附加一重量小得多的重物m,如图,使其产生一微小加速度a=mg/(2M+m),测得a后,即可算出g.
1888年,法国军事测绘局使用新的方法进行了g值的计量.它的原理简述为:若一个物体如单摆那样以相同的周期绕两个中心摆动,则两个中心之间的距离等于与上述周期相同的单摆的长度.当时的计量结果为:g=9.80991m/s2
1906年,德国的库能和福脱万勒用相同的方法在波茨坦作了g值的计量,作为国际重力网的参考点,即称为“波茨坦重力系统”的起点,其结果为g(波茨坦)=9.81274m/s2
根据波茨坦得到的g值可以通过相对重力仪来求得其他地点与它的差值,从而得出地球上各地的g值,这样建立起来的一系列g值就称为波茨坦重力系统.国际计量局在1968年10月的会议上推荐,自1969年1月1日起,g(波茨坦)减小到9.81260m/s2.(粗略计算时g=10N/m2
(1)月球表面上的重力加速度为地球表面上的重力加速度的1/6,同一个飞行器在月球表面上时与在地球表面上时相比较[]
A.惯性减小为数学公式,重力不变.
B.惯性和重力都减小为数学公式
C.惯性不变,重力减小为数学公式
D.惯性和重力都不变.
(2)如图所示,在两根轻质弹簧a、b之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同一竖直线上的两点,等小球静止后,突然撤去弹簧a,则在撤去弹簧后的瞬间,小球加速度的大小为2.5米/秒2,若突然撤去弹簧b,则在撤去弹簧后的瞬间,小球加速度的大小可能
A.7.5米/秒2,方向竖直向下
B.7.5米/秒2,方向竖直向上
C.12.5米/秒2,方向竖直向下
D.12.5米/秒2,方向竖直向上.

查看答案和解析>>

读下面材料,回答有关问题:
地球表面附近的物体,在仅受重力作用时具有的加速度叫做重力加速度,也叫自由落体加速度,用g表示.在自由落体运动时,g=a,重力加速度g值的准确测定对于计量学、精密物理计量、地球物理学、地震预报、重力探矿和空间科学等都具有重要意义.
最早测定重力加速度的是伽利略.约在1590年,他利用倾角为θ的斜面将g的测定改为测定微小加速度a=gsinθ,如图1.1784年,G?阿特武德将质量同为M的重物用绳连接后,挂在光滑的轻质滑轮上,再在另一个重物上附加一重量小得多的重物m,如图,使其产生一微小加速度a=mg/(2M+m),测得a后,即可算出g.
1888年,法国军事测绘局使用新的方法进行了g值的计量.它的原理简述为:若一个物体如单摆那样以相同的周期绕两个中心摆动,则两个中心之间的距离等于与上述周期相同的单摆的长度.当时的计量结果为:g=9.80991m/s2
1906年,德国的库能和福脱万勒用相同的方法在波茨坦作了g值的计量,作为国际重力网的参考点,即称为“波茨坦重力系统”的起点,其结果为g(波茨坦)=9.81274m/s2
根据波茨坦得到的g值可以通过相对重力仪来求得其他地点与它的差值,从而得出地球上各地的g值,这样建立起来的一系列g值就称为波茨坦重力系统.国际计量局在1968年10月的会议上推荐,自1969年1月1日起,g(波茨坦)减小到9.81260m/s2.(粗略计算时g=10N/m2
(1)月球表面上的重力加速度为地球表面上的重力加速度的1/6,同一个飞行器在月球表面上时与在地球表面上时相比较[]
A.惯性减小为,重力不变.
B.惯性和重力都减小为
C.惯性不变,重力减小为
D.惯性和重力都不变.
(2)如图所示,在两根轻质弹簧a、b之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同一竖直线上的两点,等小球静止后,突然撤去弹簧a,则在撤去弹簧后的瞬间,小球加速度的大小为2.5米/秒2,若突然撤去弹簧b,则在撤去弹簧后的瞬间,小球加速度的大小可能( )
A.7.5米/秒2,方向竖直向下
B.7.5米/秒2,方向竖直向上
C.12.5米/秒2,方向竖直向下
D.12.5米/秒2,方向竖直向上.

查看答案和解析>>

焦耳

  焦耳(James Prescort Joule,1818~1889)英国杰出的物理学家。1818年12月24日生于曼彻斯特附近的索尔福德。父亲是个富有的啤酒厂厂主。焦耳从小就跟父亲参加酿酒劳动,学习酿酒技术,没上过正规学校。16岁时和兄弟一起在著名化学家道尔顿门下学习,然而由于老师有病,学习时间并不长,但是道尔顿对他的影响极大,使他对科学研究产生了强烈的兴趣。1838年他拿出一间住房开始了自己的实验研究。他经常利用酿酒后的业余时间,亲手设计制作实验仪器,进行实验。焦耳一生都在从事实验研究工作,在电磁学、热学、气体分子动理论等方面均作出了卓越的贡献。他是靠自学成为物理学家的。

  焦耳是从磁效应和电动机效率的测定开始实验研究的。他曾以为电磁铁将会成为机械功的无穷无尽的源泉,很快他发现蒸汽机的效率要比刚发明不久的电动机效率高得多。正是这些实验探索导致了他对热功转换的定量研究。

  从1840年起,焦耳开始研究电流的热效应,写成了《论伏打电所生的热》、《电解时在金属导体和电池组中放出的热》等论文,指出:导体中一定时间内所生成的热量与导体的电流的二次方和电阻之积成正比。此后不久的1842年,俄国著名物理学家楞次也独立地发现了同样的规律,所以被称为焦耳-楞次定律。这一发现为揭示电能、化学能、热能的等价性打下了基础,敲开了通向能量守恒定律的大门。焦耳也注意探讨各种生热的自然“力”之间存在的定量关系。他做了许多实验。例如,他把带铁芯的线圈放入封闭的水容器中,将线圈与灵敏电流计相连,线圈可在强电磁铁的磁场间旋转。电磁铁由蓄电池供电。实验时电磁铁交替通断电流各15分钟,线圈转速达每分钟600次。这样,就可将摩擦生热与电流生热两种情况进行比较,焦耳由此证明热量与电流二次方成正比,他还用手摇、砝码下落等共13种方法进行实验,最后得出:“使1磅水升高1°F的热量,等于且可能转化为把838磅重物举高1英尺的机械力(功)”(合460千克重米每千卡)。总结这些结果,他写出《论磁电的热效应及热的机械值》论文,并在1843年8月21日英国科学协会数理组会议上宣读。他强调了自然界的能是等量转换、不会消灭的,哪里消耗了机械能或电磁能,总在某些地方能得到相当的热。这对于热的动力说是极好的证明与支持。因此引起轰动和热烈的争议。

  为了进一步说服那些受热质说影响的科学家,他表示:“我打算利用更有效和更精确的装置重做这些实验。”以后他改变测量方法,例如,将压缩一定量空气所需的功与压缩产生的热量作比较确定热功当量;利用水通过细管运动放出的热量来确定热功当量;其中特别著名的也是今天仍可认为是最准确的桨叶轮实验。通过下降重物带动量热器中的叶片旋转,叶片与水的摩擦所生的热量由水的温升可准确测出。他还用其他液体(如鲸油、水银)代替水。不同的方法和材料得出的热功当量都是423.9千克重·米每千卡或趋近于423.85千克重·米每千卡。

  在1840~1879年焦耳用了近40年的时间,不懈地钻研和测定了热功当量。他先后用不同的方法做了400多次实验,得出结论:热功当量是一个普适常量,与做功方式无关。他自己1878年与1849年的测验结果相同。后来公认值是427千克重·米每千卡。这说明了焦耳不愧为真正的实验大师。他的这一实验常数,为能量守恒与转换定律提供了无可置疑的证据。

  1847年,当29岁的焦耳在牛津召开的英国科学协会会议上再次报告他的成果时,本来想听完后起来反驳的开尔文勋爵竟然也被焦耳完全说服了,后来两人合作得很好,共同进行了多孔塞实验(1852),发现气体经多孔塞膨胀后温度下降,称为焦耳-汤姆孙效应,这个效应在低温技术和气体液化方面有广泛的应用。焦耳的这些实验结果,在1850年总结在他出版的《论热功当量》的重要著作中。他的实验,经多人从不同角度不同方法重复得出的结论是相同的。1850年焦耳被选为英国皇家学会会员。此后他仍不断改进自己的实验。恩格斯把“由热的机械当量的发现(迈尔、焦耳和柯尔丁)所导致的能量转化的证明”列为19世纪下半叶自然科学三大发现的第一项。

选自:《物理教师手册》

打印本文


查看答案和解析>>

法拉第

  迈克尔·法拉第(MichaelFaraday,1791—1867)是19世纪电磁学领域中最伟大的实验物理学家。他于1791年9月22日生于伦敦附近的纽因格顿,父亲是铁匠。由于家境贫苦,他只在7岁到9岁读过两年小学。12岁当报童,13岁在一家书店当了装订书的学徒。他喜欢读书,利用在书店的条件,读了许多科学书籍,并动手做了一些简单的化学实验。

  1812年秋,法拉第有机会听了著名化学家戴维的四次讲演,激起对科学研究的极大兴趣。他把戴维的讲演精心整理并附上插图后寄给戴维,希望戴维帮助他实现科学研究的愿望。1813年3月,戴维推荐法拉第到皇家研究院实验室作了自己的助理实验员。1813年10月,法拉第跟随戴维到欧洲大陆进行学术考察18个月。在这期间他有机会参观了各国科学家的实验室,结交了安培、盖·吕萨克等著名科学家,了解了他们的科学研究方法。回到英国后,法拉第就开始了独立的研究工作,并于1816年发表了第一篇化学论文,以后又接连发表了几篇。

  1820年奥斯特发现电流的磁效应,受到科学界的关注,促进了科学的发展。1821年英国《哲学年鉴》的主编约请戴维撰写一篇文章,评述奥斯特发现以来电磁学实验的理论发展概况。戴维把这一工作交给了法拉第。法拉第在收集资料的过程中,对电磁现象的研究产生了极大的热情,并开始转向电磁学的研究。他仔细地分析了电流的磁效应等现象,认为既然电流能产生磁,磁能否产生电呢?1822年他在日记中写下了自己的思想:“磁能转化成电”。他在这方面进行了系统的研究。起初,他试图用强磁铁靠近闭合导线或用强电流使另一闭合导线中产生电流,做了大量的实验,都失败了。经过历时十年的失败、再试验,直到1831年8月29日才取得成功。他接连又做了几十个这类实验。1831年11月24日的论文中,他把产生感应电流的情况概括成五类:变化着的电流;变化着的磁场;运动的恒定电流;运动的磁场;在磁场中运动的导体。他指出:感应电流与原电流的变化有关,而不是与原电流本身有关。他将这一现象与导体上的静电感应类比,把它取名为“电磁感应”。为了解释电磁感应现象,法拉第曾提出过“电张力”的概念。后来在考虑了电磁感应的各种情况后,认为可以把感应电流的产生归因于导体“切割磁力线”。在电磁感应现象发现二十年后,直到1851年才得出了电磁感应定律。

  1833年到1834年,法拉第从实验得出了电解定律,这是电荷不连续性的最早的有力证据。

  法拉第的另一贡献是提出了场的概念。他反对超距作用的说法,设想带电体、磁体周围空间存在一种物质,起到传递电、磁力的作用,他把这种物质称为电场、磁场。1852年,他引入了电力线(即电场线)、磁力线(即磁感线)的概念,并用铁粉显示了磁棒周围的磁力线形状。场的概念和力线的模型,对当时的传统观念是一个重大的突破。

  法拉第从近距作用的物理图景出发,还预见了电、磁作用传播的波动性和它们传播的非瞬时性。他在1832年3月12日写给英国皇家学会的一封密封信中,信封上写着“现在应当收藏在皇家学会档案馆里的一些新观点”,这封信直到1938年才启封公布,信中法拉第说明了他的上述新观点。表现了法拉第深邃的物理洞察力和深刻的物理思想。

  法拉第把他做过的实验整理成《电学实验研究》一书,书中收集了三千多个条目,详细记述了他做过的实验和结论,是一本珍贵的科学文献。

  法拉第是靠自学成才的科学家,在科学的征途上辛勤奋斗半个多世纪,不求名利。1825年,他参与冶炼不锈钢材和折光性能良好的重冕玻璃工作,不少公司和厂家出重金聘请法拉第为他们的技术顾问。面对15万镑的财富和没有报酬的学问,法拉第选择了后者。1851年,法拉第被一致推选为英国皇家学会会长,他也坚决推辞掉了这个职务。把全身心献给了科学研究事业,终生过着清贫的日子。

  1855年他从皇家学院退休。1867年8月25日在伦敦去世。遵照他“一辈子当一个平凡的迈克尔·法拉第”的意愿,遗体被安葬在海格特公墓。为了纪念他,用他的名字命名电容的单位──法拉。

选自:《物理教师手册》


查看答案和解析>>


同步练习册答案