对力的功率的认识 由.可得:.此式中为力F与速度之间的夹角.把当作整体来看是物体在力的方向上的分速度.即:作用在物体上的力与物体在力的方向上分速度的乘积叫做力的功率. 对一个动力机械.当功率P一定时.由可知:降低运动速度可以增大牵引力,反过来.若阻力很小.可以加快运动速度.这一点在各种机械设备中有着广泛的应用. 任何机械都有一个铭牌.铭牌上所注功率为这部机械的额定功率.它是提供人们对机械进行选择.配置的一个重要参数.它反映了机械的做功能力或机械所能承担的“任务 .机械运行过程中的功率是实际功率.机械的实际功率可以小于其额定功率.可以等于其额定功率.还可以在短时间内略大于其额定功率.机械不能长时间超负荷运行.那样会损坏机械设备.缩短其使用寿命. 查看更多

 

题目列表(包括答案和解析)

为研究在月球上的跳高问题,课题研究组的同学小李、小王、小华,在望江楼图书馆的多媒体阅读室里上多媒体宽带网的“世界体坛”网站,点播了当年朱建华破世界纪录的精彩的视频实况录像,并就“朱建华在月球上能跳多高?”展开了相关讨论.

解说员:“……各位观众你们瞧,中国著名跳高选手朱建华正伸臂、扩胸、压腿做准备活动,他身高1.83米.注意了:他开始助跑、踏跳,只见他身轻如燕,好一个漂亮的背跃式,将身体与杆拉成水平,跃过了2.38米高度,成功了!打破了世界纪录.全场响起雷鸣般的掌声……”

小李:朱建华真棒!如果他在月球上还能跳得更高一些.

小王:对.据我们所学的力学知识可知,他在月球上的重力加速度g是地球上的重力加速度g 的六分之一,那么他在月球上的重力将是地球上重力的六分之一,因此他在月球上能跳过的高度将是地球上能跳过高度的6倍,由2.38 × 6米=14.28米,即朱建华在月球上能跳过的高度是14.28米.

小华:你的分析是:“力为地球上的六分之一,则跳过的高度为地球上的6倍”,理由似乎不够确切.我认为应从功和能的关系思考问题.我设朱建华在踏跳时,脚蹬地弹力做功为W,对于同一个朱建华来说,不论是在月球上还是地球上,W 都是相同的,可以计算出朱建华在月球上能跳过的高度也是14.28米.

老师:小华的计算还有问题,在重心计算时没有注意到著名的“黄金律”,这是一条普适定律.现给你们介绍如下:

公元前6世纪数学家华达可拉斯发现0.618的比率叫做黄金律又叫黄金比,人体的新陈代谢、生理节奏、生理功能的最佳环境温度为23 ℃,这是由于37 ℃×0.618≈23 ℃的缘故.标准身高用黄金分割得肚脐眼,脐眼以上分割得肩膀,肩膀以上分割得鼻眼,肚脐眼以下分割得膝盖,上长肢跟下长肢的比≈0.618,下长肢跟身高之比≈0.618等等.

请根据以上的讨论,求出朱建华在月球上能跳多高.

查看答案和解析>>

为研究在月球上的跳高问题,课题研究组的同学小李、小王、小华,在望江楼图书馆的多媒体阅读室里上多媒体宽带网的“世界体坛”网站,点播了当年朱建华破世界纪录的精彩的视频实况录像,并就“朱建华在月球上能跳多高?”展开了相关讨论.

解说员:“……各位观众你们瞧,中国著名跳高选手朱建华正伸臂、扩胸、压腿做准备活动,他身高1.83米.注意了:他开始助跑、踏跳,只见他身轻如燕,好一个漂亮的背跃式,将身体与杆拉成水平,跃过了2.38米高度,成功了!打破了世界纪录.全场响起雷鸣般的掌声……”

小李:朱建华真棒!如果他在月球上还能跳得更高一些.

小王:对.据我们所学的力学知识可知,他在月球上的重力加速度g是地球上的重力加速度g的六分之一,那么他在月球上的重力将是地球上重力的六分之一,因此他在月球上能跳过的高度将是地球上能跳过高度的6倍,由2.38×6米=14.28米,即朱建华在月球上能跳过的高度是14.28米.

小华:你的分析是:“力为地球上的六分之一,则跳过的高度为地球上的6倍”,理由似乎不够确切.我认为应从功和能的关系思考问题.我设朱建华在踏跳时,脚蹬地弹力做功为W,对于同一个朱建华来说,不论是在月球上还是地球上,W都是相同的,可以计算出朱建华在月球上能跳过的高度也是14.28米.

老师:小华的计算还有问题,在重心计算时没有注意到著名的“黄金律”,这是一条普适定律.现给你们介绍如下:

公元前6世纪数学家华达可拉斯发现0.618的比率叫做黄金律又叫黄金比,人体的新陈代谢、生理节奏、生理功能的最佳环境温度为23℃,这是由于37℃×0.618≈23℃的缘故.标准身高用黄金分割得肚脐眼,脐眼以上分割得肩膀,肩膀以上分割得鼻眼,肚脐眼以下分割得膝盖,上长肢跟下长肢的比≈0.618,下长肢跟身高之比≈0.618等等.

请根据以上的讨论,求出朱建华在月球上能跳多高.

查看答案和解析>>

  为研究在月球上跳高问题,课题研究组的同学小李、小王、小华,在望江楼图书馆的多媒体阅读室里,上多媒体宽带网的“世界体坛”网站,点播了当年朱建华破世界纪录的精彩的视频实况录像,并就“朱建华在月球上能跳多高?”展开了相关讨论.

  解说员:“……各位观众你们瞧,中国著名跳高选手朱建华正伸臂、扩胸、压腿做准备活动,他身高1.83 m.注意了:他开始助跑、踏跳,只见他身轻如燕,好一个漂亮的背跃式,将身体与杆拉成水平,跃过2.38 m高度,成功了!打破世界纪录.全场响起雷鸣般的掌声……”小李:朱建华真棒!如果他在月球上还能跳得更高一些.

  小王:对.据我们所学的力学知识可知,他在月球上的重力加速度g是地球上的重力加速度g的六分之一;那么他在月球上的重力将是地球上重力的六分之一,因此他在月球上能跳过的高度将是地球上能跳过高度的6倍,由2.38×6 m=14.28 m,即朱建华在月球上能跳过的高度是14.28 m.

  小华:你的分析是:“力为地球上的六分之一,则跳过的高度为地球上的6倍”,理由似乎不够确切.我认为应从功和能的关系思考问题,我设朱建华在踏跳时,脚蹬地弹力做功为W,对于同一个未建华来说,不论是在月球上还是在地球上,W都是相同的,可以计算出朱建华在月球上能跳过的高度也是14.28 m.

  老师:小华的计算还有问题,在重心计算时没有注意到著名的“黄金律”,这是一条普适律.现给你们介绍如下:

  公元前6世纪数学家华达可拉斯发现0.618的比率叫做黄金律又叫黄金比,人体的新陈代谢,生理节奏,生理功能的最佳环境温度23℃,这是由于37℃×0.618≈23℃的缘故.标准身高用黄金分割得肚脐眼,脐眼以上分割得肩膀,肩膀以上分割得鼻眼,脐眼以下分割得膝盖,上长肢跟下长肢的比≈0.618,下长肢跟身高之比≈0.618等等.

请根据以上的讨论,求出朱建华在月球上能跳多高.

查看答案和解析>>

第十部分 磁场

第一讲 基本知识介绍

《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。

一、磁场与安培力

1、磁场

a、永磁体、电流磁场→磁现象的电本质

b、磁感强度、磁通量

c、稳恒电流的磁场

*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I 、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB 。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中 k = 1.0×10?7N/A2 。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。

毕萨定律应用在“无限长”直导线的结论:B = 2k 

*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI 

*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI 。其中n为单位长度螺线管的匝数。

2、安培力

a、对直导体,矢量式为 = I;或表达为大小关系式 F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。

b、弯曲导体的安培力

⑴整体合力

折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。

证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为

F = 

  = BI

  = BI

关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。

证毕。

由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)

⑵导体的内张力

弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。

c、匀强磁场对线圈的转矩

如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为

M = BIS

几种情形的讨论——

⑴增加匝数至N ,则 M = NBIS ;

⑵转轴平移,结论不变(证明从略);

⑶线圈形状改变,结论不变(证明从略);

*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα ,如图9-3;

证明:当α = 90°时,显然M = 0 ,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…

⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ ,如图9-4。

证明:当β = 90°时,显然M = 0 ,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…

说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。

二、洛仑兹力

1、概念与规律

a、 = q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。

b、能量性质

由于总垂直确定的平面,故总垂直 ,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。

问题:安培力可以做功,为什么洛仑兹力不能做功?

解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v ,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1 = qv1B的合力(见图9-5)。

很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)

☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?

若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。

2、仅受洛仑兹力的带电粒子运动

a、时,匀速圆周运动,半径r =  ,周期T = 

b、成一般夹角θ时,做等螺距螺旋运动,半径r =  ,螺距d = 

这个结论的证明一般是将分解…(过程从略)。

☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1 ,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?

其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)

3、磁聚焦

a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。

b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。

4、回旋加速器

a、结构&原理(注意加速时间应忽略)

b、磁场与交变电场频率的关系

因回旋周期T和交变电场周期T′必相等,故 =

c、最大速度 vmax = = 2πRf

5、质谱仪

速度选择器&粒子圆周运动,和高考要求相同。

第二讲 典型例题解析

一、磁场与安培力的计算

【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。

【解说】这是一个关于毕萨定律的简单应用。解题过程从略。

【答案】大小为8.0×10?6T ,方向在图9-9中垂直纸面向外。

【例题2】半径为R ,通有电流I的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。

【解说】本题有两种解法。

方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。因为θ 

查看答案和解析>>