如图5所示.重力为G的质点p与三根劲系数相同的轻弹簧A.B.C相连.C处于竖直方向.静止时相邻的弹簧之间的夹角均为120º以知弹簧A.B对质点p的弹力大小均为G/2,则弹簧C对质点p的弹力大小可能为( ) A.3G/2 B.G/2 C.0 D.3G 查看更多

 

题目列表(包括答案和解析)

如图甲所示,两根足够长的光滑直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.用与导轨平行且向上的恒定拉力F作用在金属杆上,金属杆ab沿导轨向上运动,最终将做匀速运动.当改变拉力F的大小时,相对应的匀速运动速度v也会改变,v和F的关系如图乙所示.
(1)金属杆ab在匀速运动之前做什么运动?
(2)若m=0.25kg,L=0.5m,R=0.5Ω,取重力加速度g=10m/s2,试求磁感应强度B的大小及θ角的正弦值sin θ.

查看答案和解析>>

如图15所示,水平绝缘轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m。轨道所在空间存在水平向右的匀强电场,电场强度E=1.0×104 N/C。现有一电荷量q=+1.0×10-4C,质量m=0.10 kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体运动到圆形轨道最低点B时的速度vB=5.0m/s。已知带电体与水平轨道间的动摩擦因数μ=0.50,重力加速度g=10m/s2。求:

(1)带电体运动到圆形轨道的最低点B时,圆形轨道对带电体支持力的大小;

(2)带电体在水平轨道上的释放点PB点的距离;

(3)带电体第一次经过C点后,落在水平轨道上的位置到B点的距离。

查看答案和解析>>

如图21所示,第四象限内有互相正交的匀强电场E与匀强磁场B1,E的大小为1.5×103V/m,Bl大小为0.5T;第一象限的某个矩形区域内,有方向垂直纸面的匀强磁场B2,磁场的下边界与x轴重合。一质量m=1×10-14kg、电荷量q=2×l0-10C的带正电微粒以某一速度v沿与y轴正方向60°角从M点沿直线运动,经P点即进入处于第一象限内的磁场B2区域。一段时间后,小球经过y轴上的N点并与y轴正方向成60°角的方向飞出。M点的坐标为(0,-10),N点的坐标为(0,30),不计粒子重力,g取10m/s2。则求:

(1)微粒运动速度v的大小;

(2)匀强磁场B2的大小;

(3)B2磁场区域的最小面积。

 

查看答案和解析>>

如图21所示,第四象限内有互相正交的匀强电场E与匀强磁场B1,E的大小为1.5×103V/m,Bl大小为0.5T;第一象限的某个矩形区域内,有方向垂直纸面的匀强磁场B2,磁场的下边界与x轴重合。一质量m=1×10-14kg、电荷量q=2×l0-10C的带正电微粒以某一速度v沿与y轴正方向60°角从M点沿直线运动,经P点即进入处于第一象限内的磁场B2区域。一段时间后,小球经过y轴上的N点并与y轴正方向成60°角的方向飞出。M点的坐标为(0,-10),N点的坐标为(0,30),不计粒子重力,g取10m/s2。则求:

(1)微粒运动速度v的大小;
(2)匀强磁场B2的大小;
(3)B2磁场区域的最小面积。

查看答案和解析>>

如图21所示,第四象限内有互相正交的匀强电场E与匀强磁场B1,E的大小为1.5×103V/m,Bl大小为0.5T;第一象限的某个矩形区域内,有方向垂直纸面的匀强磁场B2,磁场的下边界与x轴重合。一质量m=1×10-14kg、电荷量q=2×l0-10C的带正电微粒以某一速度v沿与y轴正方向60°角从M点沿直线运动,经P点即进入处于第一象限内的磁场B2区域。一段时间后,小球经过y轴上的N点并与y轴正方向成60°角的方向飞出。M点的坐标为(0,-10),N点的坐标为(0,30),不计粒子重力,g取10m/s2。则求:

(1)微粒运动速度v的大小;

(2)匀强磁场B2的大小;

(3)B2磁场区域的最小面积。

 

查看答案和解析>>


同步练习册答案