B地球绕太阳运行的轨道半长轴为1.50×1011m.周期为365天,月球绕地球运行的轨道半长轴为3.8×lO8m.周期为27.3天,则对于绕太阳运动的行星R3/T2的值为 .对于绕地球运动的卫星是R3/T2的值为 . 查看更多

 

题目列表(包括答案和解析)

(14分)

 

(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M

(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质M。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)

【解析】:(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a即为轨道半径r。根据万有引力定律和牛顿第二定律有

                            ①

    于是有                           ②

即                                ③

(2)在月地系统中,设月球绕地球运动的轨道半径为R,周期为T,由②式可得

                                ④

解得     M=6×1024kg                         ⑤

M=5×1024kg也算对)

23.【题文】(16分)

     如图所示,在以坐标原点O为圆心、半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t0时间从P点射出。

(1)求电场强度的大小和方向。

(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经时间恰从半圆形区域的边界射出。求粒子运动加速度的大小。

(3)若仅撤去电场,带电粒子仍从O点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。

 

查看答案和解析>>

对于开普勒行星运动的公式,以下理解正确的是

A.若地球绕太阳运转轨道的半长轴为,周期为;月球绕地球运转轨道的半长轴为
,周期为,则
B.表示行星运动的自转周期,表示行星的半径
C.表示行星运动的公转周期,表示行星运行椭圆轨道的半长轴
D.在太阳系中,是一个与行星、太阳均无关的常量

查看答案和解析>>

对于开普勒行星运动的公式,以下理解正确的是

A.若地球绕太阳运转轨道的半长轴为,周期为;月球绕地球运转轨道的半长轴为

,周期为,则

B.表示行星运动的自转周期,表示行星的半径

C.表示行星运动的公转周期,表示行星运行椭圆轨道的半长轴

D.在太阳系中,是一个与行星、太阳均无关的常量

 

查看答案和解析>>

对于开普勒行星运动的公式,以下理解正确的是
A.若地球绕太阳运转轨道的半长轴为,周期为;月球绕地球运转轨道的半长轴为
,周期为,则
B.表示行星运动的自转周期,表示行星的半径
C.表示行星运动的公转周期,表示行星运行椭圆轨道的半长轴
D.在太阳系中,是一个与行星、太阳均无关的常量

查看答案和解析>>

如图所示,B为绕地球沿椭圆轨道运行的卫星,椭圆的半长轴为a,运行周期为TB;C为绕地球沿圆周运动的卫星,圆周的半径为r,运行周期为TC.下列说法或关系式中正确的是(  )
A.地球位于B卫星轨道的一个焦点上,位于C卫星轨道的圆心上
B.卫星B和卫星C运动的速度大小均不变
C.
a3
TB2
=
r3
TC2
,该比值的大小与地球有关
D.
a3
TB2
r3
TC2
,该比值的大小不仅仅与地球有关,还与太阳有关

查看答案和解析>>


同步练习册答案