22.试根据开普勒第三定律和牛顿运动定律证明太阳与行星间的引力大小与太阳的质量和行星的质量的乘积成正比.与两者距离的二次方成反比(提示:可将行星的运动看作是以太阳为圆心的匀速圆周运动). 杭十四中二〇〇八学年第二学期期中测试 查看更多

 

题目列表(包括答案和解析)

试根据开普勒第三定律和牛顿运动定律证明太阳与行星间的引力大小与太阳的质量和行星的质量的乘积成正比,与两者距离的二次方成反比(提示:可将行星的运动看作是以太阳为圆心的匀速圆周运动).

查看答案和解析>>

试根据开普勒第三定律和牛顿运动定律证明太阳与行星间的引力大小与太阳的质量和行星的质量的乘积成正比,与两者距离的二次方成反比(提示:可将行星的运动看作是以太阳为圆心的匀速圆周运动).

查看答案和解析>>

开普勒1609年一1619年发表了著名的开普勒行星运行三定律,其中第三定律的内容是:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等.万有引力定律是科学史上最伟大的定律之一,它于1687年发表在牛顿的《自然哲学的数学原理中》.
(1)请从开普勒行星运动定律等推导万有引力定律(设行星绕太阳的运动可视为匀速圆周运动);
(2)万有引力定律的正确性可以通过“月-地检验”来证明:
如果重力与星体间的引力是同种性质的力,都与距离的二次方成反比关系,那么,由于月心到地心的距离是地球半径的60倍;月球绕地球做近似圆周运动的向心加速度就应该是重力加速度的1/3600.
试根据上述思路并通过计算证明:重力和星体间的引力是同一性质的力(已知地球半径为6.4×106m,月球绕地球运动的周期为28天,地球表面的重力加速度为9.8m/s2).

查看答案和解析>>

开普勒1609年一1619年发表了著名的开普勒行星运行三定律,其中第三定律的内容是:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等.万有引力定律是科学史上最伟大的定律之一,它于1687年发表在牛顿的《自然哲学的数学原理中》.
(1)请从开普勒行星运动定律等推导万有引力定律(设行星绕太阳的运动可视为匀速圆周运动);
(2)万有引力定律的正确性可以通过“月-地检验”来证明:
如果重力与星体间的引力是同种性质的力,都与距离的二次方成反比关系,那么,由于月心到地心的距离是地球半径的60倍;月球绕地球做近似圆周运动的向心加速度就应该是重力加速度的1/3600.
试根据上述思路并通过计算证明:重力和星体间的引力是同一性质的力(已知地球半径为6.4×106m,月球绕地球运动的周期为28天,地球表面的重力加速度为9.8m/s2).

查看答案和解析>>

开普勒1609年一1619年发表了著名的开普勒行星运行三定律,其中第三定律的内容是:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等.万有引力定律是科学史上最伟大的定律之一,它于1687年发表在牛顿的《自然哲学的数学原理中》.
(1)请从开普勒行星运动定律等推导万有引力定律(设行星绕太阳的运动可视为匀速圆周运动);
(2)万有引力定律的正确性可以通过“月-地检验”来证明:
如果重力与星体间的引力是同种性质的力,都与距离的二次方成反比关系,那么,由于月心到地心的距离是地球半径的60倍;月球绕地球做近似圆周运动的向心加速度就应该是重力加速度的1/3600.
试根据上述思路并通过计算证明:重力和星体间的引力是同一性质的力(已知地球半径为6.4×106m,月球绕地球运动的周期为28天,地球表面的重力加速度为9.8m/s2).

查看答案和解析>>


同步练习册答案