过山车是游乐场中常见的设施.下图是一种过山车的简易模型.它由水平轨道和在竖直平面内的三个圆形轨道组成.B.C.D分别是三个圆形轨道的最低点.B.C间距与C.D间距相等.半径,.一个质量为kg的小球.从轨道的左侧A点以的初速度沿轨道向右运动.A.B间距m.小球与水平轨道间的动摩擦因数.圆形轨道是光滑的.假设水平轨道足够长.圆形轨道间不相互重叠.重力加速度取.计算结果保留小数点后一位数字.试求 (1)如果小球恰能通过第二圆形轨道.B.C间距应是多少, 的条件下.如果要使小球不能脱离轨道.在第三个圆形轨道的设计中.半径应满足的条件. 查看更多

 

题目列表(包括答案和解析)

(10分)过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,BCD分别是三个圆形轨道的最低点,BC间距与CD间距相等,半径,.一个质量为kg的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,AB间距m.小球与水平轨道间的动摩擦因数,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.重力加速度取,计算结果保留小数点后一位数字.试求

(1)如果小球恰能通过第二圆形轨道,BC间距应是多少;

(2)在满足(1)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件.

          

查看答案和解析>>

过山车是游乐场中常见的设施.下图是一种过山车部分轨道的简易模型,它由θ=45°的倾斜轨道和在竖直平面内的三个圆形轨道及水平轨道组成.A是倾斜轨道的最高点,其最低点与B平滑相连,且弯道部分长度忽略不计,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=15.0m、R2=12.0m.一个质量为m=500kg的车厢(视为质点),从倾斜轨道的最高点A点由静止开始滑下,A、B的高度差H=60m.车厢与倾斜及水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.取g=10m/s2,求:

(1)车厢在经过第一个圆形轨道的最高点时,轨道对车厢作用力的大小;
(2)如果车厢恰能通过第二个圆形轨道,B、C间距L应是多少?
(3)在满足(2)的条件下,要使车厢能安全通过第三个圆形轨道的最高点,半径R3应满足什么条件?

查看答案和解析>>

精英家教网过山车是游乐场中常见的设施.某校物理兴趣小组自制过山车的简易模型,如图所示,它由水平轨道和在竖直平面内的圆形轨道组成,B、C分别是二个圆形轨道的最低点,半径分别是R1=2.0m、R2=1.4M,DE段是一半径为R3=1.0m的四分之一光滑圆弧轨道,它与水平轨道平滑连接,D点为圆弧的最高点,一个质量为M=1.0kg的小球(视为质点),从轨道的左侧A点以V0=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0m.C、D间距S=15.0m,小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.重力加速度取g=10m/s2,试求:
(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;
(2)如果小球恰能通过第二圆形轨道,B、C间距L应是多少;
(3)如果小球从第二圆形轨道运动到水平轨道的D点时,能否沿DE圆弧轨道滑下?若不能请说明理由.

查看答案和解析>>

(20分)过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,BCD分别是三个圆形轨道的最低点,BC间距与CD间距相等,半径。一个质量为kg的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,AB间距m。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位数字。试求

(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;

(2)如果小球恰能通过第二圆形轨道,BC间距应是多少;

(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。

查看答案和解析>>

过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0 m、R2=1.4 m。一个质量为m=1.0 kg的小球(视为质点),从轨道的左侧A点以v0=12.0 m/s的初速度沿轨道向右运动,A、B间距L1=6.0 m。小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取g=10 m/s2,计算结果保留小数点后一位数字。试求

(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;

(2)如果小球恰能通过第二个圆形轨道,B、C间距L应是多少;

(3)在满足(2)的条件下,如果要使小球不脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;小球最终停留点与起点A的距离。

分析:主要考查动能定理和圆周运动。

查看答案和解析>>


同步练习册答案