分子动理论的基本内容: (1)阿伏加德罗常数: (2)分子的热运动.分子热运动的动能: (3)分子间的相互作用力.分子势能: ( 4)物体的内能.热量.改变内能的两种方式: 查看更多

 

题目列表(包括答案和解析)

A.(选修模块3-3)(12分)
(1)下列四幅图的有关说法中正确的是        

A.分子间距离为r0时,分子间不存在引力和斥力
B.水面上的单分子油膜,在测量油膜直径d大小时可把他们当做球形处理
C.食盐晶体中的钠、氯离子按一定规律分布,具有空间上的周期性
D.猛推木质推杆,气体对外界做正功,密闭的气体温度升高,压强变大
(2)已知某物质摩尔质量为M,密度为ρ,阿伏加德罗常数为NA,则该物质的分子质量为      ,单位体积的分子数为      . 
(3)如图,一定质量的理想气体从状态A经等容过程变化到状态B,此过程中气体吸收的热量Q=6.0×102J,

求:
①该气体在状态A时的压强;
②该气体从状态A到状态B过程中内能的增量。
B.(选修模块3-4)(12分)
(1)下列四幅图的有关说法中正确的是      

A.由两个简谐运动的图像可知:它们的相位差为/2或者
B.当球与横梁之间存在摩擦的情况下,球的振动不是简谐运动
C.频率相同的两列波叠加时,某些区域的振动加强,某些区域的振动减弱
D.当简谐波向右传播时,质点A此时的速度沿y轴正方向
(2)1905年爱因斯坦提出的狭义相对论是以狭义相对性原理和           这两条基本假设为前提的;在相对于地面以0.8c运动的光火箭上的人观测到地面上的的生命进程比火箭上的生命进程要   (填快或慢)。
(3)如图所示,△ABC为等腰直角三棱镜的横截面,∠C=90°,一束激光a沿平行于AB边射入棱镜,经一次折射后射到BC边时,刚好能发生全反射,求该棱镜的折射率n和棱镜中的光速。

C.(选修模块3-5)(12分)
(1)下列说法正确的是
A.某放射性元素经过19天后,余下的该元素的质量为原来的1/32,则该元素的半衰期为 3.8天
B.a粒子散射实验说明原子核内部具有复杂结构
C.对放射性物质施加压力,其半衰期将减少
D.氢原子从定态n=3跃迁到定态n= 2,再跃迁到定态n = 1,则后一次跃迁辐射的光的波长比前一次的要短
(2)光电效应和       都证明光具有粒子性,      提出实物粒子也具有波动性。
(3)如图所示,水平光滑地面上依次放置着质量均为m ="0.08" kg的10块完全相同的长直木板。质量M =" 1.0" kg、大小可忽略的小铜块以初速度v0="6.0" m/s从长木板左端滑上木板,当铜块滑离第一块木板时,速度大小为v1="4.0" m/S。铜块最终停在第二块木板上。取g="10" m/s2,结果保留两位有效数字。求:

①第一块木板的最终速度
②铜块的最终速度

查看答案和解析>>

A.(选修模块3-3)(12分)

(1)下列四幅图的有关说法中正确的是        

A.分子间距离为r0时,分子间不存在引力和斥力

B.水面上的单分子油膜,在测量油膜直径d大小时可把他们当做球形处理

C.食盐晶体中的钠、氯离子按一定规律分布,具有空间上的周期性

D.猛推木质推杆,气体对外界做正功,密闭的气体温度升高,压强变大

(2)已知某物质摩尔质量为M,密度为ρ,阿伏加德罗常数为NA,则该物质的分子质量为      ,单位体积的分子数为      . 

(3)如图,一定质量的理想气体从状态A经等容过程变化到状态B,此过程中气体吸收的热量Q=6.0×102J,

求:

①该气体在状态A时的压强;

②该气体从状态A到状态B过程中内能的增量。

B.(选修模块3-4)(12分)

(1)下列四幅图的有关说法中正确的是      

A.由两个简谐运动的图像可知:它们的相位差为/2或者

B.当球与横梁之间存在摩擦的情况下,球的振动不是简谐运动

C.频率相同的两列波叠加时,某些区域的振动加强,某些区域的振动减弱

D.当简谐波向右传播时,质点A此时的速度沿y轴正方向

(2)1905年爱因斯坦提出的狭义相对论是以狭义相对性原理和           这两条基本假设为前提的;在相对于地面以0.8c运动的光火箭上的人观测到地面上的的生命进程比火箭上的生命进程要   (填快或慢)。

(3)如图所示,△ABC为等腰直角三棱镜的横截面,∠C=90°,一束激光a沿平行于AB边射入棱镜,经一次折射后射到BC边时,刚好能发生全反射,求该棱镜的折射率n和棱镜中的光速。

C.(选修模块3-5)(12分)

(1)下列说法正确的是

A.某放射性元素经过19天后,余下的该元素的质量为原来的1/32,则该元素的半衰期为 3.8天

B.a粒子散射实验说明原子核内部具有复杂结构

C.对放射性物质施加压力,其半衰期将减少

D.氢原子从定态n=3跃迁到定态n= 2,再跃迁到定态n = 1,则后一次跃迁辐射的光的波长比前一次的要短

(2)光电效应和       都证明光具有粒子性,      提出实物粒子也具有波动性。

(3)如图所示,水平光滑地面上依次放置着质量均为m ="0.08" kg的10块完全相同的长直木板。质量M =" 1.0" kg、大小可忽略的小铜块以初速度v0="6.0" m/s从长木板左端滑上木板,当铜块滑离第一块木板时,速度大小为v1="4.0" m/S。铜块最终停在第二块木板上。取g="10" m/s2,结果保留两位有效数字。求:

①第一块木板的最终速度

②铜块的最终速度

 

查看答案和解析>>

A.(选修模块3-3)(12分)
(1)下列四幅图的有关说法中正确的是        

A.分子间距离为r0时,分子间不存在引力和斥力
B.水面上的单分子油膜,在测量油膜直径d大小时可把他们当做球形处理
C.食盐晶体中的钠、氯离子按一定规律分布,具有空间上的周期性
D.猛推木质推杆,气体对外界做正功,密闭的气体温度升高,压强变大
(2)已知某物质摩尔质量为M,密度为ρ,阿伏加德罗常数为NA,则该物质的分子质量为      ,单位体积的分子数为      . 
(3)如图,一定质量的理想气体从状态A经等容过程变化到状态B,此过程中气体吸收的热量Q=6.0×102J,

求:
①该气体在状态A时的压强;
②该气体从状态A到状态B过程中内能的增量。
B.(选修模块3-4)(12分)
(1)下列四幅图的有关说法中正确的是      

A.由两个简谐运动的图像可知:它们的相位差为/2或者
B.当球与横梁之间存在摩擦的情况下,球的振动不是简谐运动
C.频率相同的两列波叠加时,某些区域的振动加强,某些区域的振动减弱
D.当简谐波向右传播时,质点A此时的速度沿y轴正方向
(2)1905年爱因斯坦提出的狭义相对论是以狭义相对性原理和           这两条基本假设为前提的;在相对于地面以0.8c运动的光火箭上的人观测到地面上的的生命进程比火箭上的生命进程要   (填快或慢)。
(3)如图所示,△ABC为等腰直角三棱镜的横截面,∠C=90°,一束激光a沿平行于AB边射入棱镜,经一次折射后射到BC边时,刚好能发生全反射,求该棱镜的折射率n和棱镜中的光速。

C.(选修模块3-5)(12分)
(1)下列说法正确的是
A.某放射性元素经过19天后,余下的该元素的质量为原来的1/32,则该元素的半衰期为 3.8天
B.a粒子散射实验说明原子核内部具有复杂结构
C.对放射性物质施加压力,其半衰期将减少
D.氢原子从定态n=3跃迁到定态n= 2,再跃迁到定态n = 1,则后一次跃迁辐射的光的波长比前一次的要短
(2)光电效应和       都证明光具有粒子性,      提出实物粒子也具有波动性。
(3)如图所示,水平光滑地面上依次放置着质量均为m ="0.08" kg的10块完全相同的长直木板。质量M =" 1.0" kg、大小可忽略的小铜块以初速度v0="6.0" m/s从长木板左端滑上木板,当铜块滑离第一块木板时,速度大小为v1="4.0" m/S。铜块最终停在第二块木板上。取g="10" m/s2,结果保留两位有效数字。求:

①第一块木板的最终速度
②铜块的最终速度

查看答案和解析>>

第七部分 热学

热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。

一、分子动理论

1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)

对于分子(单原子分子)间距的计算,气体和液体可直接用,对固体,则与分子的空间排列(晶体的点阵)有关。

【例题1】如图6-1所示,食盐(NaCl)的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3kg/mol,密度为2.2×103kg/m3,阿伏加德罗常数为6.0×1023mol-1,求食盐晶体中两个距离最近的钠离子中心之间的距离。

【解说】题意所求即图中任意一个小立方块的变长(设为a)的倍,所以求a成为本题的焦点。

由于一摩尔的氯化钠含有NA个氯化钠分子,事实上也含有2NA个钠离子(或氯离子),所以每个钠离子占据空间为 v = 

而由图不难看出,一个离子占据的空间就是小立方体的体积a3 ,

即 a3 =  = ,最后,邻近钠离子之间的距离l = a

【答案】3.97×10-10m 。

〖思考〗本题还有没有其它思路?

〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有×8个离子 = 分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。)

2、物质内的分子永不停息地作无规则运动

固体分子在平衡位置附近做微小振动(振幅数量级为0.1),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s)。

无论是振动还是迁移,都具备两个特点:a、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b、剧烈程度和温度相关。

气体分子的三种速率。最可几速率vP :f(v) = (其中ΔN表示v到v +Δv内分子数,N表示分子总数)极大时的速率,vP == ;平均速率:所有分子速率的算术平均值, ==;方均根速率:与分子平均动能密切相关的一个速率,==〔其中R为普适气体恒量,R = 8.31J/(mol.K)。k为玻耳兹曼常量,k =  = 1.38×10-23J/K 〕

【例题2】证明理想气体的压强P = n,其中n为分子数密度,为气体分子平均动能。

【证明】气体的压强即单位面积容器壁所承受的分子的撞击力,这里可以设理想气体被封闭在一个边长为a的立方体容器中,如图6-3所示。

考查yoz平面的一个容器壁,P =            ①

设想在Δt时间内,有Nx个分子(设质量为m)沿x方向以恒定的速率vx碰撞该容器壁,且碰后原速率弹回,则根据动量定理,容器壁承受的压力

 F ==                            ②

在气体的实际状况中,如何寻求Nx和vx呢?

考查某一个分子的运动,设它的速度为v ,它沿x、y、z三个方向分解后,满足

v2 =  +  + 

分子运动虽然是杂乱无章的,但仍具有“偶然无序和统计有序”的规律,即

 =  +  +  = 3                    ③

这就解决了vx的问题。另外,从速度的分解不难理解,每一个分子都有机会均等的碰撞3个容器壁的可能。设Δt = ,则

 Nx = ·3N = na3                         ④

注意,这里的是指有6个容器壁需要碰撞,而它们被碰的几率是均等的。

结合①②③④式不难证明题设结论。

〖思考〗此题有没有更简便的处理方法?

〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z这6个方向运动(这样造成的宏观效果和“杂乱无章”地运动时是一样的),则 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子间存在相互作用力(注意分子斥力和气体分子碰撞作用力的区别),而且引力和斥力同时存在,宏观上感受到的是其合效果。

分子力是保守力,分子间距改变时,分子力做的功可以用分子势能的变化表示,分子势能EP随分子间距的变化关系如图6-4所示。

分子势能和动能的总和称为物体的内能。

二、热现象和基本热力学定律

1、平衡态、状态参量

a、凡是与温度有关的现象均称为热现象,热学是研究热现象的科学。热学研究的对象都是有大量分子组成的宏观物体,通称为热力学系统(简称系统)。当系统的宏观性质不再随时间变化时,这样的状态称为平衡态。

b、系统处于平衡态时,所有宏观量都具有确定的值,这些确定的值称为状态参量(描述气体的状态参量就是P、V和T)。

c、热力学第零定律(温度存在定律):若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。

2、温度

a、温度即物体的冷热程度,温度的数值表示法称为温标。典型的温标有摄氏温标t、华氏温标F(F = t + 32)和热力学温标T(T = t + 273.15)。

b、(理想)气体温度的微观解释: = kT (i为分子的自由度 = 平动自由度t + 转动自由度r + 振动自由度s 。对单原子分子i = 3 ,“刚性”〈忽略振动,s = 0,但r = 2〉双原子分子i = 5 。对于三个或三个以上的多原子分子,i = 6 。能量按自由度是均分的),所以说温度是物质分子平均动能的标志。

c、热力学第三定律:热力学零度不可能达到。(结合分子动理论的观点2和温度的微观解释很好理解。)

3、热力学过程

a、热传递。热传递有三种方式:传导(对长L、横截面积S的柱体,Q = K

查看答案和解析>>


同步练习册答案