比较这些方程.将第一个方程改为 将第二个方程代入得 所以18.(1)中子( 3个 (2) (依据核电荷数守恒和质量数守恒可判断为中子.且.根据爱因斯坦的质能方程.即=结合已知条件可得. 19(2)1105kg(依据已知......则..则核反应次数为.则每年消耗的的质量.即 ) 点评:原子核反应类型可分为四类.天然衰变.人工转变.核裂变.核聚变.第1题和第2题考察了这方面的知识.核反应方程满足质量数守恒.电荷数守恒.能由电荷数守恒.质量数守恒分析相关问题.例如第4题.6题等.由爱因斯坦质能方程解决有关核能问题具有重要的实际意义.要予以足够重视. 查看更多

 

题目列表(包括答案和解析)

(1)建筑、桥梁工程中所用的金属材料(如钢筋钢梁等)在外力作用下会伸长,其伸长量不仅与和拉力的大小有关,还和金属材料的横截面积有关.人们发现对同一种金属,其所受的拉力与其横截面积的比值跟金属材料的伸长量与原长的比值的比是一个常数,这个常数叫做杨氏模量.用E表示,即:E=
F
S
 )
△L
L
 )
;某同学为探究其是否正确,根据下面提供的器材:不同粗细不同长度的同种金属丝;不同质量的重物;螺旋测微器; 游标卡尺;米尺;天平;固定装置等.设计的实验如图1所示.
该同学取一段金属丝水平固定在固定装置上,将一重物挂在金属丝的中点,其中点发生了一个微小下移h.用螺旋测微器测得金属丝的直径为D;用游标卡尺测得微小下移量为h;用米尺测得金属丝的原长为2L;用天平测出重物的质量m(不超量程).
①在一次测量中:
a.螺旋测微器如图2甲所示,其示数为
3.853
3.853
mm;
b.游标卡尺如图2乙所示,其示数为
11.14
11.14
mm;

②用以上测量量的字母表示该金属的杨氏模量的表达式为:E=
2mgL
L2+h2
πD2h(
L2+h2
-L)
2mgL
L2+h2
πD2h(
L2+h2
-L)

(2)在探究“牛顿第二定律”时,某小组设计双车位移比较法来探究加速度与力的关系.实验装置如图3所示,将轨道分上下双层排列,两小车后的刹车线穿过尾端固定板,由安装在后面的刹车系统同时进行控制(未画出刹车系统).通过改变砝码盘中的砝码来改变拉力大小.通过比较两小车的位移来比较两小车的加速度大小,是因为位移与加速度的关系式为
s=
1
2
at2
s=
1
2
at2
.已知两车质量均为200g,实验数据如表中所示:
实验次数 小车 拉力F/N 位移s/cm 拉力比F/F 位移比s/s
1 0.1 22.3 0.50 0.51
0.2 43.5
2 0.2 29.0 0.67 0.67
0.3 43.0
3 0.3 41.0 0.75 0.74
0.4 55.4
分析表中数据可得到结论:
在实验误差范围内当小车质量保持不变时,由于s∝F说明a∝F;
在实验误差范围内当小车质量保持不变时,由于s∝F说明a∝F;

该装置中的刹车系统的作用是
控制两车同时运动和同时停止;
控制两车同时运动和同时停止;

为了减小实验的系统误差,你认为还可以进行哪些方面的改进?(只需提出一个建议即可)
调整两木板平衡摩擦力(或使砝码盘和砝码的总质量远小于小车的质量等).
调整两木板平衡摩擦力(或使砝码盘和砝码的总质量远小于小车的质量等).

查看答案和解析>>

(1)建筑、桥梁工程中所用的金属材料(如钢筋钢梁等)在外力作用下会伸长,其伸长量不仅与和拉力的大小有关,还和金属材料的横截面积有关.人们发现对同一种金属,其所受的拉力与其横截面积的比值跟金属材料的伸长量与原长的比值的比是一个常数,这个常数叫做杨氏模量.用E表示,即:数学公式;某同学为探究其是否正确,根据下面提供的器材:不同粗细不同长度的同种金属丝;不同质量的重物;螺旋测微器; 游标卡尺;米尺;天平;固定装置等.设计的实验如图1所示.
该同学取一段金属丝水平固定在固定装置上,将一重物挂在金属丝的中点,其中点发生了一个微小下移h.用螺旋测微器测得金属丝的直径为D;用游标卡尺测得微小下移量为h;用米尺测得金属丝的原长为2L;用天平测出重物的质量m(不超量程).
①在一次测量中:
a.螺旋测微器如图2甲所示,其示数为______mm;
b.游标卡尺如图2乙所示,其示数为______mm;

②用以上测量量的字母表示该金属的杨氏模量的表达式为:E=______.
(2)在探究“牛顿第二定律”时,某小组设计双车位移比较法来探究加速度与力的关系.实验装置如图3所示,将轨道分上下双层排列,两小车后的刹车线穿过尾端固定板,由安装在后面的刹车系统同时进行控制(未画出刹车系统).通过改变砝码盘中的砝码来改变拉力大小.通过比较两小车的位移来比较两小车的加速度大小,是因为位移与加速度的关系式为______.已知两车质量均为200g,实验数据如表中所示:
实验次数小车拉力F/N位移s/cm拉力比F/F位移比s/s
10.122.30.500.51
0.243.5
20.229.00.670.67
0.343.0
30.341.00.750.74
0.455.4
分析表中数据可得到结论:______.
该装置中的刹车系统的作用是______.
为了减小实验的系统误差,你认为还可以进行哪些方面的改进?(只需提出一个建议即可)______.

查看答案和解析>>

第七部分 热学

热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。

一、分子动理论

1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)

对于分子(单原子分子)间距的计算,气体和液体可直接用,对固体,则与分子的空间排列(晶体的点阵)有关。

【例题1】如图6-1所示,食盐(NaCl)的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3kg/mol,密度为2.2×103kg/m3,阿伏加德罗常数为6.0×1023mol-1,求食盐晶体中两个距离最近的钠离子中心之间的距离。

【解说】题意所求即图中任意一个小立方块的变长(设为a)的倍,所以求a成为本题的焦点。

由于一摩尔的氯化钠含有NA个氯化钠分子,事实上也含有2NA个钠离子(或氯离子),所以每个钠离子占据空间为 v = 

而由图不难看出,一个离子占据的空间就是小立方体的体积a3 ,

即 a3 =  = ,最后,邻近钠离子之间的距离l = a

【答案】3.97×10-10m 。

〖思考〗本题还有没有其它思路?

〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有×8个离子 = 分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。)

2、物质内的分子永不停息地作无规则运动

固体分子在平衡位置附近做微小振动(振幅数量级为0.1),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s)。

无论是振动还是迁移,都具备两个特点:a、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b、剧烈程度和温度相关。

气体分子的三种速率。最可几速率vP :f(v) = (其中ΔN表示v到v +Δv内分子数,N表示分子总数)极大时的速率,vP == ;平均速率:所有分子速率的算术平均值, ==;方均根速率:与分子平均动能密切相关的一个速率,==〔其中R为普适气体恒量,R = 8.31J/(mol.K)。k为玻耳兹曼常量,k =  = 1.38×10-23J/K 〕

【例题2】证明理想气体的压强P = n,其中n为分子数密度,为气体分子平均动能。

【证明】气体的压强即单位面积容器壁所承受的分子的撞击力,这里可以设理想气体被封闭在一个边长为a的立方体容器中,如图6-3所示。

考查yoz平面的一个容器壁,P =            ①

设想在Δt时间内,有Nx个分子(设质量为m)沿x方向以恒定的速率vx碰撞该容器壁,且碰后原速率弹回,则根据动量定理,容器壁承受的压力

 F ==                            ②

在气体的实际状况中,如何寻求Nx和vx呢?

考查某一个分子的运动,设它的速度为v ,它沿x、y、z三个方向分解后,满足

v2 =  +  + 

分子运动虽然是杂乱无章的,但仍具有“偶然无序和统计有序”的规律,即

 =  +  +  = 3                    ③

这就解决了vx的问题。另外,从速度的分解不难理解,每一个分子都有机会均等的碰撞3个容器壁的可能。设Δt = ,则

 Nx = ·3N = na3                         ④

注意,这里的是指有6个容器壁需要碰撞,而它们被碰的几率是均等的。

结合①②③④式不难证明题设结论。

〖思考〗此题有没有更简便的处理方法?

〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z这6个方向运动(这样造成的宏观效果和“杂乱无章”地运动时是一样的),则 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子间存在相互作用力(注意分子斥力和气体分子碰撞作用力的区别),而且引力和斥力同时存在,宏观上感受到的是其合效果。

分子力是保守力,分子间距改变时,分子力做的功可以用分子势能的变化表示,分子势能EP随分子间距的变化关系如图6-4所示。

分子势能和动能的总和称为物体的内能。

二、热现象和基本热力学定律

1、平衡态、状态参量

a、凡是与温度有关的现象均称为热现象,热学是研究热现象的科学。热学研究的对象都是有大量分子组成的宏观物体,通称为热力学系统(简称系统)。当系统的宏观性质不再随时间变化时,这样的状态称为平衡态。

b、系统处于平衡态时,所有宏观量都具有确定的值,这些确定的值称为状态参量(描述气体的状态参量就是P、V和T)。

c、热力学第零定律(温度存在定律):若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。

2、温度

a、温度即物体的冷热程度,温度的数值表示法称为温标。典型的温标有摄氏温标t、华氏温标F(F = t + 32)和热力学温标T(T = t + 273.15)。

b、(理想)气体温度的微观解释: = kT (i为分子的自由度 = 平动自由度t + 转动自由度r + 振动自由度s 。对单原子分子i = 3 ,“刚性”〈忽略振动,s = 0,但r = 2〉双原子分子i = 5 。对于三个或三个以上的多原子分子,i = 6 。能量按自由度是均分的),所以说温度是物质分子平均动能的标志。

c、热力学第三定律:热力学零度不可能达到。(结合分子动理论的观点2和温度的微观解释很好理解。)

3、热力学过程

a、热传递。热传递有三种方式:传导(对长L、横截面积S的柱体,Q = K

查看答案和解析>>