13.如图当线圈以P为轴转动时.求其感应电动势的最大值.已知B为1.5T.AB为10cm.BC为4cm.角速度ω=120rad/s. 查看更多

 

题目列表(包括答案和解析)

(4分)有位同学学习过磁场的有关知识后,为学校宿舍设计了一个火警自动报警装置,如图甲所示。AB为可以绕轴转动的衔铁,CD为电磁铁,与线圈相连的电源电动势为3V,内阻0.1 。R为负温度系数热敏电阻,乙图为其电阻随温度的变化图像。L为安全指示灯,P为报警电铃。忽略线圈的电阻,当电磁铁线圈上的电流达到0.1A时,衔铁会被吸下,接通报警电铃。据此回答下列问题: 

   

(1)电磁铁的                        端为N极(填“C”或“D”)。

(2)由乙图知,负温度系数热敏电阻的电阻率随温度的升高而             。(填“增大”或“减小”)

(3)现要求当温度达到70°C开始报警,则滑动变阻器的阻值应为          

查看答案和解析>>

如图甲所示,边长为l1和l2的矩形线圈共有N匝,其可绕中心轴OO′转动,将线圈的始端和终端分别接在两个滑环上,再通过电刷与阻值为R的电阻连接。线圈处于磁铁和圆柱形铁芯之间的径向磁场中,且磁场的左半边的方向沿半径方向指向圆心,右半边的方向沿半径背向圆心,两半边间的过渡区域宽度很小,可忽略不计。边长为l1的边所处磁场的磁感应强度大小为B,线圈导线单位长度的电阻为R0,当线圈以角速度ω顺时针匀速转动时。

(1)从图示位置开始计时,请在图乙中定性画出两个周期内R两端电压随时问变化的U-t图像。

(2)求此线圈正常转动时产生感应电动势的有效值。

(3)求线圈正常转动时电阻R消耗的电功率P。

查看答案和解析>>

(1)在“利用单摆测重力加速度”的实验中,测得单摆的摆角小于5°,完成n次全振动的时间为t,用毫米刻度尺测得的摆线长为L,用螺旋测微器测得摆球的直径为d.
①用上述物理量的符号写出求重力加速度的一般表达式g=
4π2n2(L+
d
2
)
t2
4π2n2(L+
d
2
)
t2

②从图1可知,摆球直径d的读数为
5.980
5.980

③实验中有个同学发现他测得的重力加速度的值总是偏大,其原因可能是下述原因中的
BC
BC

A、悬点未固定紧,振动中出现松动,使摆线增长了
B、把n次全振动的时间误作为(n+1)次全振动的时间
C、以摆线长作为摆长来计算
(2)如图2所示是测量通电螺线管A内部磁感应强度B及其与电流I关系的实验装置.将截面积为S、匝数为N的小试测线圈P置于螺线管A中间,试测线圈平面与螺线管的轴线垂直,可认为穿过该试测线圈的磁场均匀.将试测线圈引线的两端与冲击电流计D相连.拨动双刀双掷换向开关K,改变通入螺线管的电流方向,而不改变电流大小,在P中产生的感应电流引起D的指针偏转.
实验次数 I(A) B(×10-3T)
1 0.5 0.62
2 1.0 1.25
3 1.5 1.88
4 2.0 2.51
5 2.5 3.12
①将开关合到位置1,待螺线管A中的电流稳定后,再将K从位置1拨到位置2,测得D的最大偏转距离为dm,已知冲击电流计的磁通灵敏度为Dφ,Dφ=
dm
N△?
,式中△?为单匝试测线圈磁通量的变化量.则试测线圈所在处磁感应强度B=
dm
2NDΦS
dm
2NDΦS
;若将K从位置1拨到位置2的过程所用的时间为△t,则试测线圈P中产生的平均感应电动势E=
dm
D?△t
dm
D?△t

②调节可变电阻R,多次改变电流并拨动K,得到A中电流I和磁感应强度B的数据,见右表.由此可得,螺线管A内部在感应强度B和电流I的关系为B=
0.00125I
0.00125I

③为了减小实验误差,提高测量的准确性,可采取的措施有
AB
AB

A.适当增加试测线圈的匝数N     B.适当增大试测线圈的横截面积S
C.适当增大可变电阻R的阻值     D.适当拨长拨动开关的时间△t.

查看答案和解析>>

第十部分 磁场

第一讲 基本知识介绍

《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。

一、磁场与安培力

1、磁场

a、永磁体、电流磁场→磁现象的电本质

b、磁感强度、磁通量

c、稳恒电流的磁场

*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I 、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB 。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中 k = 1.0×10?7N/A2 。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。

毕萨定律应用在“无限长”直导线的结论:B = 2k 

*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI 

*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI 。其中n为单位长度螺线管的匝数。

2、安培力

a、对直导体,矢量式为 = I;或表达为大小关系式 F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。

b、弯曲导体的安培力

⑴整体合力

折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。

证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为

F = 

  = BI

  = BI

关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。

证毕。

由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)

⑵导体的内张力

弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。

c、匀强磁场对线圈的转矩

如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为

M = BIS

几种情形的讨论——

⑴增加匝数至N ,则 M = NBIS ;

⑵转轴平移,结论不变(证明从略);

⑶线圈形状改变,结论不变(证明从略);

*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα ,如图9-3;

证明:当α = 90°时,显然M = 0 ,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…

⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ ,如图9-4。

证明:当β = 90°时,显然M = 0 ,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…

说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。

二、洛仑兹力

1、概念与规律

a、 = q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。

b、能量性质

由于总垂直确定的平面,故总垂直 ,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。

问题:安培力可以做功,为什么洛仑兹力不能做功?

解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v ,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1 = qv1B的合力(见图9-5)。

很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)

☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?

若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。

2、仅受洛仑兹力的带电粒子运动

a、时,匀速圆周运动,半径r =  ,周期T = 

b、成一般夹角θ时,做等螺距螺旋运动,半径r =  ,螺距d = 

这个结论的证明一般是将分解…(过程从略)。

☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1 ,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?

其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)

3、磁聚焦

a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。

b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。

4、回旋加速器

a、结构&原理(注意加速时间应忽略)

b、磁场与交变电场频率的关系

因回旋周期T和交变电场周期T′必相等,故 =

c、最大速度 vmax = = 2πRf

5、质谱仪

速度选择器&粒子圆周运动,和高考要求相同。

第二讲 典型例题解析

一、磁场与安培力的计算

【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。

【解说】这是一个关于毕萨定律的简单应用。解题过程从略。

【答案】大小为8.0×10?6T ,方向在图9-9中垂直纸面向外。

【例题2】半径为R ,通有电流I的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。

【解说】本题有两种解法。

方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。因为θ 

查看答案和解析>>


同步练习册答案