设地面附近的重力加速度为g.地球半径为R.人造地球卫星运行轨道半径为r.则卫星在轨道上运行时的速度大小为 .向心加速度大小为 . 角速度大小为 .周期为 . 查看更多

 

题目列表(包括答案和解析)

设地面附近重力加速度为g,地球半径为R,人造地球卫星圆形轨道半径为r,那么以下说法中正确的是

[  ]

A.卫星在轨道上向心加速度大小为

B.卫星运行的线速度大小为

C.卫星运行的角速度大小为

D.卫星运行的周期为2π

查看答案和解析>>

“重力探矿”是常用的探测石油矿藏的方法之一。其原理可简述如下:如图,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为;石油密度远小于,可将上述球形区域视为空腔。如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏差。重力加速度在原坚直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”。为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象。已知引力常数为G。

(1)“重力探矿”利用了“割补法”原理:如图所示,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,剩余的阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?
(2)设球形空腔体积为V,球心深度为d(远小于地球半径),=x,利用“割补法”原理:如果将近地表的球形空腔填满密度为的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常值可通过填充后的球形区域对Q处物体m产生的附加引力来计算,式中M是填充岩石后球形区域的质量,求空腔所引起的Q点处的重力加速度反常值在OP方向上的分量)
(3)若在水平地面上半径L的范围内发现:重力加速度反常值在(k>1)(为常数)之间变化,且重力加速度反常的最大值出现在半为L的范围的中心,如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积。

查看答案和解析>>

“重力探矿”是常用的探测石油矿藏的方法之一。其原理可简述如下:如图,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为;石油密度远小于,可将上述球形区域视为空腔。如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏差。重力加速度在原坚直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”。为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象。已知引力常数为G。

(1)“重力探矿”利用了“割补法”原理:如图所示,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,剩余的阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?
(2)设球形空腔体积为V,球心深度为d(远小于地球半径),=x,利用“割补法”原理:如果将近地表的球形空腔填满密度为的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常值可通过填充后的球形区域对Q处物体m产生的附加引力来计算,式中M是填充岩石后球形区域的质量,求空腔所引起的Q点处的重力加速度反常值在OP方向上的分量)
(3)若在水平地面上半径L的范围内发现:重力加速度反常值在(k>1)(为常数)之间变化,且重力加速度反常的最大值出现在半为L的范围的中心,如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积。

查看答案和解析>>

设地球的半径为R,地表附近重力加速度为g,一颗质量为m离地面高度也为R的人造地球卫星绕地球做匀速圆周运动,则

[  ]

A.卫星的加速度大小为

B.卫星受万有引力的大小为

C.卫星线速度的大小为

D.卫星的角速度为

查看答案和解析>>

在地球表面附近发射卫星,当卫星的速度超过某一速度时,卫星就会脱离地球的引力,不再绕地球运行,这个速度叫做第二宇宙速度.规定物体在无限远处万有引力势能EP=0,则物体的万有引力势能可表示为,r为物体离地心的距离.设地球半径为r,地球表面重力加速度为g,忽略空气阻力的影响,试根据所学的知识,推导第二宇宙速度的表达式(用r、g表示).

查看答案和解析>>


同步练习册答案