已知回旋加速器中D型盒内匀强磁场的磁感应强度B=1.5T.D型盒的半径为R=60cm,两盒间隙d=1.0cm,两盒间电压U=2.0×104 V.今将α粒子从近似于间隙中心某点向D型盒内以近似于零的初速度.垂直于半径的方向射入.求粒子在加速器内运行的时间. 查看更多

 

题目列表(包括答案和解析)

如图为回旋加速器的装置图,D型盒的两底边分别为a、b,且相距很近,忽略粒子在其间的运动时间,设D型盒中的匀强磁场的磁感应强度为B,D型盒的半径为R,质量为m带电量为q的正电荷在a的中点从静止释放,求:

(1)带电粒子出回旋加速器时的动能
(2)从带电粒子开始运动开始计时,画出Uab一个周期内随时间t变化的图像(横轴用已知量标出)
(3)如果ab间的电压值始终保持为U,带电粒子从静止开始运动到出加速器所用的时间

查看答案和解析>>

如图为回旋加速器的装置图,D型盒的两底边分别为a、b,且相距很近,忽略粒子在其间的运动时间,设D型盒中的匀强磁场的磁感应强度为B,D型盒的半径为R,质量为m带电量为q的正电荷在a的中点从静止释放,求:

(1)带电粒子出回旋加速器时的动能

(2)从带电粒子开始运动开始计时,画出Uab一个周期内随时间t变化的图像(横轴用已知量标出)

(3)如果ab间的电压值始终保持为U,带电粒子从静止开始运动到出加速器所用的时间

 

查看答案和解析>>

如图为回旋加速器的装置图,D型盒的两底边分别为a、b,且相距很近,忽略粒子在其间的运动时间,设D型盒中的匀强磁场的磁感应强度为B,D型盒的半径为R,质量为m带电量为q的正电荷在a的中点从静止释放,求:

(1)带电粒子出回旋加速器时的动能
(2)从带电粒子开始运动开始计时,画出Uab一个周期内随时间t变化的图像(横轴用已知量标出)
(3)如果ab间的电压值始终保持为U,带电粒子从静止开始运动到出加速器所用的时间

查看答案和解析>>

1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如下图(甲)所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q,初速度为0,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。

(1)求粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比;

(2)求粒子从静止开始加速到出口处所需的时间t和粒子获得的最大动能Ekm

(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合。例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量。n个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图(乙)所示(图中只画出了六个圆筒,作为示意)。各筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端。整个装置放在高真空容器中。圆筒的两底面中心开有小孔。现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场)。缝隙的宽度很小,离子穿过缝隙的时间可以不计。已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差12=-U。为为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量。

查看答案和解析>>

1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图(甲)所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,初速度为0,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t和粒子获得的最大动能Ekm

(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合.例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量.n个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图(乙)所示(图中只画出了六个圆筒,作为示意).各筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.

查看答案和解析>>


同步练习册答案