如图所示.A处有一个静止不动的带电体Q.若在c处有初速度为零的质子和α粒子.在电场力作用下由c点向d点运动.已知质子到达d时速度为v1,α粒子到达d时速度为v2.那么v1.v2等于:( ) A. ∶1 B.2∶1 C.2∶1 D.1∶2 查看更多

 

题目列表(包括答案和解析)

如图所示,A处有一个静止不动的带电体,若在C处有初速度为零的质子、α粒子,在电场力的作用下由C点向D点运动.已知质子达到D点的速度为v1,α粒子达到D点的速度为v2,那么v1∶v2等于:

[  ]

A.∶1

B.2∶1

C.2∶1

D.1∶2

查看答案和解析>>

如图所示,A、B为两块平行金属板,A板带正电、B板带负电.两板之间存在着匀强电场,两板间距为d、电势差为U,在B板上开有两个间距为L的小孔.C、D为两块同心半圆形金属板,圆心都在贴近B板的O′点处,且C带正电,D带负电.C、D两板间的距离很近,两板末端的中心线正对着B板上的小孔,两板间的电场强度可认为大小处处相等,方向都指向O′.半圆形金属板两端与B板的间隙可忽略不计.现从正对B板小孔紧靠A板的O点处由静止释放一个质量为m、电量为q的带正电微粒(微粒的重力不计),求:
(1)微粒穿过B板小孔时的速度大小;
(2)微粒恰能在CD板间运动而不碰板,CD板间的电场强度大小;
(3)从静止释放开始到微粒第二次通过半圆形金属板间的最低点P的时间;
(4)试画出微粒由静止释放到第二次通过半圆形金属板间的最低点P的速率-时间图象.

查看答案和解析>>

如图所示,A、B、C为三块水平放置的金属板,板的厚度不计,间距均为d.A、B板中央有小孔,电路中三个电阻的阻值均为R,电源内阻也为R.现有一质量为m的带正电q的液滴在距A板小孔正上方为d的P处由静止开始下落,不计空气阻力,当它达到C板时速度恰为零.求:
(1)电源电动势E的大小.
(2)液滴通过B板中央小孔时的速度.

查看答案和解析>>

如图所示,A、B是两块竖直放置的平行金属板,相距为2L,分别带有等量的负、正电荷,在两板间形成电场强度大小为E的匀强电场.A板上有一小孔(它的存在对两板间匀强电场分布的影响可忽略不计),孔的下沿右侧有一条与板垂直的水平光滑绝缘轨道,一个质量为m,电荷量为g(g>0)的小球(可视为质点),在外力作用下静止在轨道的中点P处.孔的下沿左侧也有一与板垂直的水平光滑绝缘轨道,轨道上距A板L处有一固定档板,长为L的轻弹簧左端固定在挡板上,右端固定一块轻小的绝缘材料制成的薄板Q.撤去外力释放带电小粒,它将在电场力作用下由静止开始向左运动,穿过小孔后(不与金属板A接触)与薄板Q一起压缩弹簧,由于薄板Q及弹簧的质量都可以忽略不计,可认为小球与Q接触过程中不损失机械能.小球从接触Q开始,经历时间To第一次把弹簧压缩至最短,然后又被弹簧弹回.由于薄板Q的绝缘性能有所欠缺,使得小球每次离开Q瞬间,小球的电荷量都损失一部分,而变成刚与Q接触时小球电荷量的
1
k
(k>1)求:
(l)小球第一次接触Q时的速度大小;
(2)假设小球第n次弹回两板间后向右运动的最远处没有到达B板,试导出小球从第n次接触Q,到本次向右运动至最远处的时间Tn的表达式;
(3)若k=2,且小孔右侧的轨道粗糙与带电小球间的滑动摩擦力为f=
qE
4
,试求带电小球最终停止的位置距P点的距离.

查看答案和解析>>

如图所示,A是置于光滑水平面上的表面绝缘、质量m1=1kg的小车,小车的左端放置有一个可视为质点的、质量m2=2kg、电荷量q=+1×10-4 C的小物块B,距小车右端s=2m处有一竖直的墙壁.小车所在空间有一个可以通过开关控制其有、无的水平向右的匀强电场,电场强度的大小为E=3×104N/C.若小车A和小物块B一起由静止开始运动,且在小车与墙壁碰撞的瞬间撤去电场;碰撞时间忽略不计,碰撞过程无机械能的损失;小物块B始终未到达小车A的右端,它们之问的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力.小车不带电,g取10m/s2.求:
(1)有电场作用时小车A所受的摩擦力大小和方向?
(2)小车A第一次与墙壁相碰后向左运动的最远距离为多少?
(3)小车A第二次与墙壁相碰时的速度为多少?
(4)要使小物块B最终不滑离小车A,小车的长度至少多长?

查看答案和解析>>


同步练习册答案