如图㈣-4所示.水平面上方有半径为r的圆形面光源S和跟它形状完全一样的不透光挡板M.S和M都平行于水平面P.它们圆心的连线垂直于平面P.且M到S和P的距离相等.那么平面P上的本影区和半影区的面积之比为 . 查看更多

 

题目列表(包括答案和解析)

如图甲所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d=0.5m,导轨左端通过导线与阻值为2Ω的电阻R连接,右端通过导线与阻值为4Ω的小灯泡L连接.在矩形区域CDFE内有竖直向上的匀强磁场,CE长为2m,CDFE区域内磁场的磁感应强度B随时间变化的关系如图乙所示,在t=0时,一阻值为2Ω的金属棒在水平恒力F作用下由静止开始从AB位置沿导轨向右运动,在金属棒从AB位置运动到EF位置的过程中,小灯泡的亮度没有发生变化,求:
(1)通过小灯泡的电流大小
(2)恒力F的大小
(3)4s末金属棒的速度大小
(4)金属棒的质量.

查看答案和解析>>

如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5m,电阻不计,左端通过导线与阻值R=2Ω的电阻连接,右端通过导线与阻值RL=4Ω的小灯泡L连接.在CDEF矩形区域内有竖直向上的匀强磁场,CE长l=4m,有一阻值r=2Ω的金属棒PQ放置在靠近磁场边界CD处.CDEF区域内磁场的磁感应强度B随时间变化如图乙所示.在t=0至t=4s内,金属棒PQ保持静止,在t=4s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化,求

(1)通过小灯泡的电流.
(2)金属棒PQ在磁场区域中运动的速度大小.
(3)金属棒PQ在磁场区域运动过程中克服安培力所做的功.

查看答案和解析>>

选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑,如都作答则按A、B两小题评分.)
A.(选修模块3-3)
(1)下列说法中正确的是
B
B

A.布朗运动是分子的无规则热运动
B.气体分子间距离减小时,分子间斥力增大,引力也增大
C.导热性能各向同性的固体,一定不是单晶体
D.机械能不可能全部转化为内能
(2)如图1所示,一导热性能良好的金属气缸静放在水平面上,活塞与气缸壁间的摩擦不计.气缸内封闭了一定质量的理想气体.现缓慢地向活塞上倒一定质量的沙土,忽略环境温度的变化,在此过程中
CD
CD

A.气体的内能增大
B.气缸内分子平均动能增大
C.气缸内气体分子密度增大
D.单位时间内撞击气缸壁单位面积上的分子数增多

(3)在做用油膜法估测分子的大小实验中,油酸酒精溶液的浓度为每104mL溶液中有纯油酸6mL.用注射器测得50滴这样的溶液为1mL.把l滴该溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅水盘上,在玻璃板上描出油膜的轮廓,随后把玻璃放在坐标纸上,其形状如图2所示,坐标纸正方形小方格的边长为20mm.则油酸膜的面积是
2.4×10-2
2.4×10-2
m2,每一滴油酸酒精溶液中含有纯油酸的体积是
1.2×10-11
1.2×10-11
m3,根据上述数据,可估算出油酸分子的直径.
B.(选修模块3-4)
(1)关于对光现象的解释,下列说法中正确的是
AC
AC

A.自然光斜射到玻璃表面时,反射光和折射光都是偏振光
B.水面上的油膜呈现彩色是光的衍射现象
C.光纤导光利用了光的全反射规律
D.玻璃中的气泡看起来特别明亮是光的干涉现象
(2)一列横波沿x轴正方向传播,在t0=0时刻的波形如图3所示,波刚好传到x=3m处,此后x=lm处的质点比x=-lm处的质点
(选填“先”、“后”或“同时”)到达波峰位置;若该波的波速为10m/s,经过△t时间,在x轴上-3m~3m区间内的波形与t0时刻的正好相同,则△t=
0.4ns(n=1,2,3┅)
0.4ns(n=1,2,3┅)

(3)某实验小组利用数字实验系统探究弹簧振子的运动规律,装置如图4所示,水平光滑导轨上的滑块与轻弹簧组成弹簧振子,滑块上固定有传感器的发射器.把弹簧拉长5cm由静止释放,滑块开始振动.他们分析位移一时间图象后发现,滑块的运动是简谐运动,滑块从最右端运动到最左端所用时间为ls,则弹簧振子的振动频率为
0.5
0.5
Hz;以释放的瞬时为初始时刻、向右为正方向,则滑块运动的表达式为x=
5cosлt
5cosлt
cm.

C.(选修模块3-5)
(1)下列关于原子和原子核的说法正确的是
B
B

A.β衰变现象说明电子是原子核的组成部分
B.波尔理论的假设之一是原子能量的量子化
C.放射性元素的半衰期随温度的升高而变短
D.比结合能越小表示原子核中的核子结合得越牢固
(2)一群氢原子处于量子数n=4能级状态,氢原子的能级      示意图如图5所示,那么
金属
逸出功W/eV 1.9 2.7 3.7 4.1
①氢原子可能发射
6
6
种频率的光子.
②氢原子由量子数n=4的能级跃迁到n=2的能级时辐射光子的频率是
6.15×1014
6.15×1014
Hz,用这样的光子照射右表中几种金属,金属
能发生光电效应,发生光电效应时,发射光电子的最大初动能是
0.65
0.65
eV.(普朗克常量h=6?63×10-34J?S,1eV=1.6×10-19J)
(3)在氘核
 
2
1
H
和氚核
 
3
1
H
结合成氦核
 
4
2
He
的核反应方程如下:
 
2
1
H+
 
3
1
H→
 
4
2
He+
 
1
0
n+17.6MeV

①这个核反应称为
聚变
聚变

②要发生这样的核反应,需要将反应物质的温度加热到几百万开尔文.式中17.6MeV是核反应中
放出
放出
(选填“放出”或“吸收”)的能量,核反应后生成物的总质量比核反应前物质的总质量
减少
减少
(选填“增加”或“减少”)了
3×10-29
3×10-29
㎏(保留一位有效数字)

查看答案和解析>>

如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5m,电阻不计,左端通过导线与阻值R=2Ω的电阻连接,右端通过导线与阻值RL=4Ω的小灯泡L连接.在CDEF矩形区域内有竖直向上的匀强磁场,CE长l=2m,有一阻值r=2Ω的金属棒PQ放置在靠近磁场边界CD处.CDEF区域内磁场的磁感应强度B随时间变化如图乙所示.在t=0至t=4s内,金属棒PQ保持静止,在t=4s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化,求:
(1)通过小灯泡的电流.
(2)金属棒PQ在磁场区域中运动的速度大小.
精英家教网

查看答案和解析>>

精英家教网如图甲所示,水平面上有一个多匝圆形线圈,通过导线与倾斜导轨上端相连,线圈内存在随时间均匀增大的匀强磁场,磁场沿竖直方向,其磁感应强度B1随时间变化图象如图乙所示.倾斜平行光滑金属导轨MN、M′N′相距l,导轨平面与水平面夹角为θ,并处于磁感应强度大小为B2、方向垂直导轨平面向下的匀强磁场中;一导体棒PQ垂直于导轨放置,且始终保持静止.
已知导轨相距l=0.2m,θ=37°;线圈匝数n=50,面积S=0.03m2,线圈总电阻R1=0.2Ω;磁感应强度B2=5.0T;PQ棒质量m=0.5kg,电阻R2=0.4Ω,其余电阻不计,取g=10m/s2,sin37°=0.6,则
(1)求电路中的电流I;
(2)判断圆形线圈中的磁场方向(需简单说明理由),并求出磁感应强度B1的变化率k(k=
B1△t
).

查看答案和解析>>


同步练习册答案