(一)动量守恒:物体在不受外力或合外力为零的情况下动量守恒 注意条件的确定以及初末状态的选取 1.动量守恒的条件: ① 系统不受外力或合外力为零, ② 系统的合外力不为零.但合外力在某一方向上的分力为零 .那么系统的总动量在该方向上的分量是守恒的 ③ 系统全过程中动量守恒.则全过程的平均动量守恒 条件:相互作用前静止 m1v1 = m2v2 则:m1s1 = m2s2 ④ 在某一较短时间过程中.系统所受的外力冲量远小于系统间相互作用的冲量系统总动量近似守恒 2.碰撞问题 形式分:正碰 斜碰 弹性碰撞 性质分: 非弹性碰撞 完全非弹性碰撞 两个物体在极短时间内发生相互作用.这种情况称为碰撞.由于作用时间极短.一般都满足内力远大于外力.所以可以认为系统的动量守恒. 仔细分析一下碰撞的全过程:设光滑水平面上.质量为m1的物体A以速度v1向质量为m­2的静止物体B运动.B的左端连有轻弹簧.在Ⅰ位置A.B刚好接触.弹簧开始被压缩.A开始减速.B开始加速,到Ⅱ位置A.B速度刚好相等(设为v).弹簧被压缩到最短,再往后A.B开始远离.弹簧开始恢复原长.到Ⅲ位置弹簧刚好为原长.A.B分开.这时A.B的速度分别为.全过程系统动量一定是守恒的,而机械能是否守恒就要看弹簧的弹性如何了. ⑴弹簧是完全弹性的.Ⅰ→Ⅱ系统动能减少全部转化为弹性势能.Ⅱ状态系统动能最小而弹性势能最大,Ⅱ→Ⅲ弹性势能减少全部转化为动能,因此Ⅰ.Ⅲ状态系统动能相等.这种碰撞叫做弹性碰撞.由动量守恒和能量守恒可以证明A.B的最终速度分别为:. ⑵弹簧不是完全弹性的.Ⅰ→Ⅱ系统动能减少.一部分转化为弹性势能.一部分转化为内能.Ⅱ状态系统动能仍和⑴相同.弹性势能仍最大.但比⑴小,Ⅱ→Ⅲ弹性势能减少.部分转化为动能.部分转化为内能,因为全过程系统动能有损失.这种碰撞叫非弹性碰撞. ⑶弹簧完全没有弹性.Ⅰ→Ⅱ系统动能减少全部转化为内能.Ⅱ状态系统动能仍和⑴相同.但没有弹性势能,由于没有弹性.A.B不再分开.而是共同运动.不再有Ⅱ→Ⅲ过程.这种碰撞叫完全非弹性碰撞.可以证明.A.B最终的共同速度为.在完全非弹性碰撞过程中.系统的动能损失最大.为: . (1)弹性碰撞: 动能.动量守恒 当v2= 0时: 当 时: 当 时: A球继续前进 当 时: A球被反弹 当 时: A球以原速前进 当 时 A球以原速返回 (2)非弹性碰撞:动量守恒 机械能不守恒 (3)完全非弹性碰撞 动量守恒 动能不守恒 此时能量损失最大 总结:动量守恒.碰前能量总大于或等于碰后能量. 3. 注意: 1) 动量守恒条件的判定 2) 判断碰撞运动的可能性 动量守恒 系统机械能不增加 符合实际(后球速度不能大于前球速度.被撞小球不能反向) 3) 应用动量守恒的过程中注意过程的选取 4) 动量守恒的过程分析 4. 动量守恒的应用 例8. 质量为M的楔形物块上有圆弧轨道.静止在水平面上.质量为m 的小球以速度v1向物块运动.不计一切摩擦.圆弧小于90°且足够长. 求小球能上升到的最大高度H 和物块的最终速度v. 解:系统水平方向动量守恒.全过程机械能也守恒. 在小球上升过程中.由水平方向系统动量守恒得: 由系统机械能守恒得: 解得 全过程系统水平动量守恒.机械能守恒.得 本题和上面分析的弹性碰撞基本相同.唯一的不同点仅在于重力势能代替了弹性势能. 例9. 动量分别为5kgžm/s和6kgžm/s的小球A.B沿光滑平面上的同一条直线同向运动.A追上B并发生碰撞后.若已知碰撞后A的动量减小了2kgžm/s.而方向不变.那么A.B质量之比的可能范围是什么? 解:A能追上B.说明碰前vA>vB,∴,碰后A的速度不大于B的速度. ,又因为碰撞过程系统动能不会增加. .由以上不等式组解得: 5.反冲问题 在某些情况下.原来系统内物体具有相同的速度.发生相互作用后各部分的末速度不再相同而分开.这类问题相互作用过程中系统的动能增大.有其它能向动能转化.可以把这类问题统称为反冲. 例11. 质量为m的人站在质量为M.长为L的静止小船的右端.小船的左端靠在岸边.当他向左走到船的左端时.船左端离岸多远? 解:先画出示意图.人.船系统动量守恒.总动量始终为零.所以人.船动量大小始终相等.从图中可以看出.人.船的位移大小之和等于L.设人.船位移大小分别为l1.l2.则:mv1=Mv2.两边同乘时间t.ml1=Ml2.而l1+l2=L.∴ 应该注意到:此结论与人在船上行走的速度大小无关.不论是匀速行走还是变速行走.甚至往返行走.只要人最终到达船的左端.那么结论都是相同的. 做这类题目.首先要画好示意图.要特别注意两个物体相对于地面的移动方向和两个物体位移大小之间的关系. 以上所列举的人.船模型的前提是系统初动量为零.如果发生相互作用前系统就具有一定的动量.那就不能再用m1v1=m2v2这种形式列方程.而要利用(m1+m2)v0= m1v1+ m2v2列式. 例12. 总质量为M的火箭模型 从飞机上释放时的速度为v0.速度方向水平.火箭向后以相对于地面的速率u喷出质量为m的燃气后.火箭本身的速度变为多大? 解:火箭喷出燃气前后系统动量守恒.喷出燃气后火箭剩余质量变为M-m.以v0方向为正方向. 查看更多

 

题目列表(包括答案和解析)

(1)在科学探究活动中,对实验数据进行分析归纳得出结论是非常重要的环节.下面表格中记录的是物体作直线运动中测得的位移x和对应时刻t的数据.
时刻t/s 0 0.89 1.24 1.52 1.76 1.97
位移x/m 0 0.25 0.50 0.75 1.00 1.25
T2/s2 0 0.79 1.54 2.31 3.10 3.88
将上表中时刻与位移数据对比分析,发现位移成倍增加但所甩时间不是成倍增加的,即x与t不是正比关系,于是他猜想x与t2可能是正比关系.为验证他猜想的正确性,请在坐标纸(图一)上作出x-t2图线;如果他的猜想正确,请由图线求出x与t2间的关系式,并写在横线上:
0.32t2
0.32t2
《斜率取2位有效数字》
(2)某课外兴趣小组在研究“恒力做功和物体动能变化之间的关系”的实验中使用了如下实验装置(图二):
①该小组同学实验时在安装正确,操作规范的前提下(已平衡摩擦力),用钩码的重力表示小车受到的合外力,为减小由此带来的系统误差,钩码的质量和小车的总质量之间需满足的条件是:
钩码的质量远小于小车的总质量
钩码的质量远小于小车的总质量

②实验时,小车由静止开始释放,已知释放时钩码底端离地高度为H,现测出的物理量还有:小车由静止开始起发生的位移s(s<H)、小车发生位移s时的速度大小v,钩码的质量m,小车的总质量M,设重力加速度为g,则实际测量出的恒力的功mgs将
大于
大于
(选填“大于”、“小于”或“等于”) 小车动能的
变化;若用该实验装置验证系统机械能守恒定律,即需验证关系式
mgs=
1
2
(m+M)v2
mgs=
1
2
(m+M)v2

成立;

(3)要测量电压表V1的内阻r.现有如下器材:
A.待测电压表V1(量程3V,内阻约几千欧)    B.电压表V2(量程15V,内阻约30kΩ)
C.定值电阻R(3.0kΩ)                      D.滑动变阻器R1(O~10Ω)
E.直流电源E(约9V,内阻约2Ω)           F.开关S及导线若干.
①因为所给V1、V2、R都很大,即使它们并联所得电阻也很大,故最大值为10Ω的滑动变阻器在电路中必须使用
分压
分压
接法(“分压”或“限流”)才能对电路起到控制作用;
②待测电压表V1两端的电压值可以由V1的示数直接读出,通过V1的电流因缺少电流表而不能直接测量,但可以借助题中给出的定值电阻R、电压表V2间接的测出.为了测出通过V1的电流,甲、乙、丙三位同学分别设计了
三种电路(如图三),其中合理的是
同学设计的电路.
③在图三方框内画出测量电压表V1的内阻r的完整的实验电路图.

查看答案和解析>>

第一问  车和物体收到的力都是摩擦力

f=μmg   车的加速度a1=f/M=μmg/M=1m/s^2

滑块的加速度a2=f/m=μmg/m=5m/s^2

第二问  S=2.7m

假设不能从车上滑出  那么滑块最后必定停留在车上   并且和车具有同样的末速度  设为v'

因为系统在水平方向上所受的合外力为零  所以满足动量守恒

Mv+mv0=(M+m)*v' →  v'=v0*m/(M+m)=7.5*10/(10+50)=1.25m/s

然后我们看能量  如果系统的初动能减去末动能  小于摩擦力所能做的最大功(就是滑块滑到头 但没掉下来)  那么假设成立  反之  不成立  不能明白的话  我们看下面具体的解答

先求系统的末动能  Ek'=1/2(M+m)v'^2=1/2*(50+10)*1.25^2=46.875(J)

系统的初动能  Ek=1/2mv0^2=1/2*10*7.5^2=281.25(J)

摩擦力所能做的最大功   W=fs=μmgs=0.5*10*10*3=150(J)

Ek-Ek'>W  所以也就是说  系统的初动能被摩擦力消耗掉一部分后【克服摩擦力做功】  所剩下的动能  还是要大于他们最后一起以同样的速度运动时的动能  因此滑块最后不肯能停在车上

那么   我们就来求滑块落地时与平板车右端间的水平距离

因为滑块滑出小车后  在水平方向上和小车都是做匀速运动

所以他们之间的距离  就是他们的速度差乘以滑块落地所需的时间

那么  我们就需要算出滑块的末速度v'和小车的末速度v''

现在有两个未知数 那就必须有两个方程

第一个方程是能量方程  Ek-W=1/2mv'^2+1/2Mv''^2

第二个方程是动量方程  mv0=mv'+Mv''

联立这两个方程 解得  v''=0.5m/s  或 v''=2m/s(舍掉)

从而得到v'=5m/s

接下来算滑块落地要多长时间

由h=1/2gt^2  带入数据  得t=0.6s

所以最后的答案:  S=(v'-v'')*t=4.5*0.6=2.7m

查看答案和解析>>

第七部分 热学

热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。

一、分子动理论

1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)

对于分子(单原子分子)间距的计算,气体和液体可直接用,对固体,则与分子的空间排列(晶体的点阵)有关。

【例题1】如图6-1所示,食盐(NaCl)的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3kg/mol,密度为2.2×103kg/m3,阿伏加德罗常数为6.0×1023mol-1,求食盐晶体中两个距离最近的钠离子中心之间的距离。

【解说】题意所求即图中任意一个小立方块的变长(设为a)的倍,所以求a成为本题的焦点。

由于一摩尔的氯化钠含有NA个氯化钠分子,事实上也含有2NA个钠离子(或氯离子),所以每个钠离子占据空间为 v = 

而由图不难看出,一个离子占据的空间就是小立方体的体积a3 ,

即 a3 =  = ,最后,邻近钠离子之间的距离l = a

【答案】3.97×10-10m 。

〖思考〗本题还有没有其它思路?

〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有×8个离子 = 分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。)

2、物质内的分子永不停息地作无规则运动

固体分子在平衡位置附近做微小振动(振幅数量级为0.1),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s)。

无论是振动还是迁移,都具备两个特点:a、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b、剧烈程度和温度相关。

气体分子的三种速率。最可几速率vP :f(v) = (其中ΔN表示v到v +Δv内分子数,N表示分子总数)极大时的速率,vP == ;平均速率:所有分子速率的算术平均值, ==;方均根速率:与分子平均动能密切相关的一个速率,==〔其中R为普适气体恒量,R = 8.31J/(mol.K)。k为玻耳兹曼常量,k =  = 1.38×10-23J/K 〕

【例题2】证明理想气体的压强P = n,其中n为分子数密度,为气体分子平均动能。

【证明】气体的压强即单位面积容器壁所承受的分子的撞击力,这里可以设理想气体被封闭在一个边长为a的立方体容器中,如图6-3所示。

考查yoz平面的一个容器壁,P =            ①

设想在Δt时间内,有Nx个分子(设质量为m)沿x方向以恒定的速率vx碰撞该容器壁,且碰后原速率弹回,则根据动量定理,容器壁承受的压力

 F ==                            ②

在气体的实际状况中,如何寻求Nx和vx呢?

考查某一个分子的运动,设它的速度为v ,它沿x、y、z三个方向分解后,满足

v2 =  +  + 

分子运动虽然是杂乱无章的,但仍具有“偶然无序和统计有序”的规律,即

 =  +  +  = 3                    ③

这就解决了vx的问题。另外,从速度的分解不难理解,每一个分子都有机会均等的碰撞3个容器壁的可能。设Δt = ,则

 Nx = ·3N = na3                         ④

注意,这里的是指有6个容器壁需要碰撞,而它们被碰的几率是均等的。

结合①②③④式不难证明题设结论。

〖思考〗此题有没有更简便的处理方法?

〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z这6个方向运动(这样造成的宏观效果和“杂乱无章”地运动时是一样的),则 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子间存在相互作用力(注意分子斥力和气体分子碰撞作用力的区别),而且引力和斥力同时存在,宏观上感受到的是其合效果。

分子力是保守力,分子间距改变时,分子力做的功可以用分子势能的变化表示,分子势能EP随分子间距的变化关系如图6-4所示。

分子势能和动能的总和称为物体的内能。

二、热现象和基本热力学定律

1、平衡态、状态参量

a、凡是与温度有关的现象均称为热现象,热学是研究热现象的科学。热学研究的对象都是有大量分子组成的宏观物体,通称为热力学系统(简称系统)。当系统的宏观性质不再随时间变化时,这样的状态称为平衡态。

b、系统处于平衡态时,所有宏观量都具有确定的值,这些确定的值称为状态参量(描述气体的状态参量就是P、V和T)。

c、热力学第零定律(温度存在定律):若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。

2、温度

a、温度即物体的冷热程度,温度的数值表示法称为温标。典型的温标有摄氏温标t、华氏温标F(F = t + 32)和热力学温标T(T = t + 273.15)。

b、(理想)气体温度的微观解释: = kT (i为分子的自由度 = 平动自由度t + 转动自由度r + 振动自由度s 。对单原子分子i = 3 ,“刚性”〈忽略振动,s = 0,但r = 2〉双原子分子i = 5 。对于三个或三个以上的多原子分子,i = 6 。能量按自由度是均分的),所以说温度是物质分子平均动能的标志。

c、热力学第三定律:热力学零度不可能达到。(结合分子动理论的观点2和温度的微观解释很好理解。)

3、热力学过程

a、热传递。热传递有三种方式:传导(对长L、横截面积S的柱体,Q = K

查看答案和解析>>

第九部分 稳恒电流

第一讲 基本知识介绍

第八部分《稳恒电流》包括两大块:一是“恒定电流”,二是“物质的导电性”。前者是对于电路的外部计算,后者则是深入微观空间,去解释电流的成因和比较不同种类的物质导电的情形有什么区别。

应该说,第一块的知识和高考考纲对应得比较好,深化的部分是对复杂电路的计算(引入了一些新的处理手段)。第二块虽是全新的内容,但近几年的考试已经很少涉及,以至于很多奥赛培训资料都把它删掉了。鉴于在奥赛考纲中这部分内容还保留着,我们还是想粗略地介绍一下。

一、欧姆定律

1、电阻定律

a、电阻定律 R = ρ

b、金属的电阻率 ρ = ρ0(1 + αt)

2、欧姆定律

a、外电路欧姆定律 U = IR ,顺着电流方向电势降落

b、含源电路欧姆定律

在如图8-1所示的含源电路中,从A点到B点,遵照原则:①遇电阻,顺电流方向电势降落(逆电流方向电势升高)②遇电源,正极到负极电势降落,负极到正极电势升高(与电流方向无关),可以得到以下关系

UA ? IR ? ε ? Ir = UB 

这就是含源电路欧姆定律。

c、闭合电路欧姆定律

在图8-1中,若将A、B两点短接,则电流方向只可能向左,含源电路欧姆定律成为

UA + IR ? ε + Ir = UB = UA

 ε = IR + Ir ,或 I = 

这就是闭合电路欧姆定律。值得注意的的是:①对于复杂电路,“干路电流I”不能做绝对的理解(任何要考察的一条路均可视为干路);②电源的概念也是相对的,它可以是多个电源的串、并联,也可以是电源和电阻组成的系统;③外电阻R可以是多个电阻的串、并联或混联,但不能包含电源。

二、复杂电路的计算

1、戴维南定理:一个由独立源、线性电阻、线性受控源组成的二端网络,可以用一个电压源和电阻串联的二端网络来等效。(事实上,也可等效为“电流源和电阻并联的的二端网络”——这就成了诺顿定理。)

应用方法:其等效电路的电压源的电动势等于网络的开路电压,其串联电阻等于从端钮看进去该网络中所有独立源为零值时的等效电阻。

2、基尔霍夫(克希科夫)定律

a、基尔霍夫第一定律:在任一时刻流入电路中某一分节点的电流强度的总和,等于从该点流出的电流强度的总和。

例如,在图8-2中,针对节点P ,有

I2 + I3 = I1 

基尔霍夫第一定律也被称为“节点电流定律”,它是电荷受恒定律在电路中的具体体现。

对于基尔霍夫第一定律的理解,近来已经拓展为:流入电路中某一“包容块”的电流强度的总和,等于从该“包容块”流出的电流强度的总和。

b、基尔霍夫第二定律:在电路中任取一闭合回路,并规定正的绕行方向,其中电动势的代数和,等于各部分电阻(在交流电路中为阻抗)与电流强度乘积的代数和。

例如,在图8-2中,针对闭合回路① ,有

ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2 

基尔霍夫第二定律事实上是含源部分电路欧姆定律的变体(☆同学们可以列方程 UP = … = UP得到和上面完全相同的式子)。

3、Y?Δ变换

在难以看清串、并联关系的电路中,进行“Y型?Δ型”的相互转换常常是必要的。在图8-3所示的电路中

☆同学们可以证明Δ→ Y的结论…

Rc = 

Rb = 

Ra = 

Y→Δ的变换稍稍复杂一些,但我们仍然可以得到

R1 = 

R2 = 

R3 = 

三、电功和电功率

1、电源

使其他形式的能量转变为电能的装置。如发电机、电池等。发电机是将机械能转变为电能;干电池、蓄电池是将化学能转变为电能;光电池是将光能转变为电能;原子电池是将原子核放射能转变为电能;在电子设备中,有时也把变换电能形式的装置,如整流器等,作为电源看待。

电源电动势定义为电源的开路电压,内阻则定义为没有电动势时电路通过电源所遇到的电阻。据此不难推出相同电源串联、并联,甚至不同电源串联、并联的时的电动势和内阻的值。

例如,电动势、内阻分别为ε1 、r1和ε2 、r2的电源并联,构成的新电源的电动势ε和内阻r分别为(☆师生共同推导…)

ε = 

r = 

2、电功、电功率

电流通过电路时,电场力对电荷作的功叫做电功W。单位时间内电场力所作的功叫做电功率P 。

计算时,只有W = UIt和P = UI是完全没有条件的,对于不含源的纯电阻,电功和焦耳热重合,电功率则和热功率重合,有W = I2Rt = t和P = I2R = 

对非纯电阻电路,电功和电热的关系依据能量守恒定律求解。 

四、物质的导电性

在不同的物质中,电荷定向移动形成电流的规律并不是完全相同的。

1、金属中的电流

即通常所谓的不含源纯电阻中的电流,规律遵从“外电路欧姆定律”。

2、液体导电

能够导电的液体叫电解液(不包括液态金属)。电解液中离解出的正负离子导电是液体导电的特点(如:硫酸铜分子在通常情况下是电中性的,但它在溶液里受水分子的作用就会离解成铜离子Cu2+和硫酸根离子S,它们在电场力的作用下定向移动形成电流)。

在电解液中加电场时,在两个电极上(或电极旁)同时产生化学反应的过程叫作“电解”。电解的结果是在两个极板上(或电极旁)生成新的物质。

液体导电遵从法拉第电解定律——

法拉第电解第一定律:电解时在电极上析出或溶解的物质的质量和电流强度、跟通电时间成正比。表达式:m = kIt = KQ (式中Q为析出质量为m的物质所需要的电量;K为电化当量,电化当量的数值随着被析出的物质种类而不同,某种物质的电化当量在数值上等于通过1C电量时析出的该种物质的质量,其单位为kg/C。)

法拉第电解第二定律:物质的电化当量K和它的化学当量成正比。某种物质的化学当量是该物质的摩尔质量M(克原子量)和它的化合价n的比值,即 K =  ,而F为法拉第常数,对任何物质都相同,F = 9.65×104C/mol 。

将两个定律联立可得:m = Q 。

3、气体导电

气体导电是很不容易的,它的前提是气体中必须出现可以定向移动的离子或电子。按照“载流子”出现方式的不同,可以把气体放电分为两大类——

a、被激放电

在地面放射性元素的辐照以及紫外线和宇宙射线等的作用下,会有少量气体分子或原子被电离,或在有些灯管内,通电的灯丝也会发射电子,这些“载流子”均会在电场力作用下产生定向移动形成电流。这种情况下的电流一般比较微弱,且遵从欧姆定律。典型的被激放电情形有

b、自激放电

但是,当电场足够强,电子动能足够大,它们和中性气体相碰撞时,可以使中性分子电离,即所谓碰撞电离。同时,在正离子向阴极运动时,由于以很大的速度撞到阴极上,还可能从阴极表面上打出电子来,这种现象称为二次电子发射。碰撞电离和二次电子发射使气体中在很短的时间内出现了大量的电子和正离子,电流亦迅速增大。这种现象被称为自激放电。自激放电不遵从欧姆定律。

常见的自激放电有四大类:辉光放电、弧光放电、火花放电、电晕放电。

4、超导现象

据金属电阻率和温度的关系,电阻率会随着温度的降低和降低。当电阻率降为零时,称为超导现象。电阻率为零时对应的温度称为临界温度。超导现象首先是荷兰物理学家昂尼斯发现的。

超导的应用前景是显而易见且相当广阔的。但由于一般金属的临界温度一般都非常低,故产业化的价值不大,为了解决这个矛盾,科学家们致力于寻找或合成临界温度比较切合实际的材料就成了当今前沿科技的一个热门领域。当前人们的研究主要是集中在合成材料方面,临界温度已经超过100K,当然,这个温度距产业化的期望值还很远。

5、半导体

半导体的电阻率界于导体和绝缘体之间,且ρ

查看答案和解析>>


同步练习册答案