蔗糖酶能专一催化1 mol蔗糖分解为1 mol葡萄糖和1 mol果糖.某科研小组在最适温度.最适pH的条件下.对该酶的催化反应过程进行研究.结果如图所示. 请根据以上实验结果.回答下列问题: (1)在物质浓度随时间的变化图中画出最适状态下.反应过程中葡萄糖浓度随时间变化的曲线.在反应速率随酶浓度变化图中画出最适状态下.一开始时将混合物中蔗糖的浓度增加50%.反应过程中反应速率随酶浓度变化的曲线. (2)在物质浓度随时间的变化图中分别画出.一开始时将混合物中酶的浓度增加50%.反应温度降低10℃.反应温度升高10℃.反应温度升高20℃蔗糖浓度随时间变化的曲线(请用“2 标注酶浓度增加后的变化曲线.用“3 标注温度降低10℃后的变化曲线.用“4 标注温度升高10℃后的变化曲线.用“5 标注温度升高20℃后的变化曲线). (3)拜糖平与蔗糖酶的亲和力较蔗糖大15 000倍.故能竞争性抑制蔗糖与蔗糖酶的结合.向反应混合物中加入一定量的拜糖平后.请在反应速率随酶浓度变化图中画出反应速率随酶浓度变化的曲线. 解析:在物质浓度随时间的变化图中.只有表示反应物浓度的曲线才会下降.可见图中的物质浓度是蔗糖浓度.从反应关系看.1 mol蔗糖分解为1 mol葡萄糖和1 mol果糖.当蔗糖浓度为0时.反应完成.葡萄糖达到和蔗糖起始浓度相同的浓度水平.所以表示反应过程中葡萄糖浓度随时间变化的曲线的起点是0.终点的浓度和反应物的起始浓度相同.增加酶只能使反应提前到达终点.所以用曲线2表示.其下降速度快,降低反应温度使反应延迟到达终点.用曲线3表示.其下降速度慢,温度升得越高.酶失活得越快.酶失活前仍能催化蔗糖分解.所以分别表示反应温度升高10℃和反应温度升高20℃的曲线是4和5.竞争性抑制是可逆的.酶越多.酶和底物结合的概率越高.加竞争性抑制剂后.反应速率随酶浓度变化如曲线6所示.在酶浓度相同时.反应物浓度高.反应速率快.所以一开始时将混合物中蔗糖的浓度增加50%时.反应速率的变化应如曲线7所示. 答案:如图所示 查看更多

 

题目列表(包括答案和解析)

(7分)蔗糖酶能专一催化1 mol蔗糖分解为1 mol葡萄糖和1 mol果糖。某科研小组在最适温度(40℃)、最适pH的条件下,对该酶的催化反应过程进行研究,结果如图所示。

请根据以上实验结果,回答下列问题:

(1)在物质浓度随时间的变化图中画出最适状态下,反应过程中葡萄糖浓度随时间变化的曲线(请用“1”标注)。在反应速率随酶浓度变化图中画出最适状态下,一开始时将混合物中蔗糖的浓度增加50%,反应过程中反应速率随酶浓度变化的曲线(请用“7”标注)。

(2)在物质浓度随时间的变化图中分别画出,一开始时将混合物中酶的浓度增加50%、反应温度降低10℃,反应温度升高10℃、反应温度升高20℃蔗糖浓度随时间变化的曲线(请用“2”标注酶浓度增加后的变化曲线,用“3”标注温度降低10℃后的变化曲线、用“4”标注温度升高10℃后的变化曲线、用“5”标注温度升高20℃后的变化曲线)。

(3)拜糖平与蔗糖酶的亲和力较蔗糖大15 000倍,故能竞争性抑制蔗糖与蔗糖酶的结合。向足量反应混合物中加入一定量的拜糖平后,请在反应速率随酶浓度变化图中画出反应速率随酶浓度变化的曲线(请用“6”标注)。

 

 

查看答案和解析>>

蔗糖酶能专一催化1 mol蔗糖分解为1 mol葡萄糖和1 mol果糖。某科研小组在最适温度(40℃)、最适pH的条件下,对该酶的催化反应过程进行研究,结果如图所示。

请根据以上实验结果,回答下列问题:

(1)在物质浓度随时间的变化图中画出最适状态下,反应过程中葡萄糖浓度随时间变化的曲线(请用“1”标注)。在反应速率随酶浓度变化图中画出最适状态下,一开始时将混合物中蔗糖的浓度增加50%,反应过程中反应速率随酶浓度变化的曲线(请用“7”标注)。

(2)在物质浓度随时间的变化图中分别画出,一开始时将混合物中酶的浓度增加50%、反应温度降低10℃,反应温度升高10℃、反应温度升高20℃蔗糖浓度随时间变化的曲线(请用“2”标注酶浓度增加后的变化曲线,用“3”标注温度降低10℃后的变化曲线、用“4”标注温度升高10℃后的变化曲线、用“5”标注温度升高20℃后的变化曲线)。

(3)拜糖平与蔗糖酶的亲和力较蔗糖大15 000倍,故能竞争性抑制蔗糖与蔗糖酶的结合。向反应混合物中加入一定量的拜糖平后,请在反应速率随酶浓度变化图中画出反应速率随酶浓度变化的曲线(请用“6”标注)。

 

查看答案和解析>>

蔗糖酶能专一催化1 mol蔗糖分解为1 mol葡萄糖和1 mol果糖。某科研小组在最适温度(40℃)、最适pH的条件下,对该酶的催化反应过程进行研究,结果如图所示。

请根据以上实验结果,回答下列问题:

(1)在物质浓度随时间的变化图中画出最适状态下,反应过程中葡萄糖浓度随时间变化的曲线(请用“1”标注)。在反应速率随酶浓度变化图中画出最适状态下,一开始时将混合物中蔗糖的浓度增加50%,反应过程中反应速率随酶浓度变化的曲线(请用“7”标注)。

(2)在物质浓度随时间的变化图中分别画出,一开始时将混合物中酶的浓度增加50%、反应温度降低10℃,反应温度升高10℃、反应温度升高20℃蔗糖浓度随时间变化的曲线(请用“2”标注酶浓度增加后的变化曲线,用“3”标注温度降低10℃后的变化曲线、用“4”标注温度升高10℃后的变化曲线、用“5”标注温度升高20℃后的变化曲线)。

(3)拜糖平与蔗糖酶的亲和力较蔗糖大15 000倍,故能竞争性抑制蔗糖与蔗糖酶的结合。向足量反应混合物中加入一定量的拜糖平后,请在反应速率随酶浓度变化图中画出反应速率随酶浓度变化的曲线(请用“6”标注)。

 

查看答案和解析>>

(7分)蔗糖酶能专一催化1 mol蔗糖分解为1 mol葡萄糖和1 mol果糖。某科研小组在最适温度(40℃)、最适pH的条件下,对该酶的催化反应过程进行研究,结果如图所示。

请根据以上实验结果,回答下列问题:
(1)在物质浓度随时间的变化图中画出最适状态下,反应过程中葡萄糖浓度随时间变化的曲线(请用“1”标注)。在反应速率随酶浓度变化图中画出最适状态下,一开始时将混合物中蔗糖的浓度增加50%,反应过程中反应速率随酶浓度变化的曲线(请用“7”标注)。
(2)在物质浓度随时间的变化图中分别画出,一开始时将混合物中酶的浓度增加50%、反应温度降低10℃,反应温度升高10℃、反应温度升高20℃蔗糖浓度随时间变化的曲线(请用“2”标注酶浓度增加后的变化曲线,用“3”标注温度降低10℃后的变化曲线、用“4”标注温度升高10℃后的变化曲线、用“5”标注温度升高20℃后的变化曲线)。
(3)拜糖平与蔗糖酶的亲和力较蔗糖大15 000倍,故能竞争性抑制蔗糖与蔗糖酶的结合。向足量反应混合物中加入一定量的拜糖平后,请在反应速率随酶浓度变化图中画出反应速率随酶浓度变化的曲线(请用“6”标注)。

查看答案和解析>>

蔗糖酶能专一催化1 mol蔗糖分解为1 mol葡萄糖和1 mol果糖。某科研小组在最适温度(40℃)、最适pH的条件下,对该酶的催化反应过程进行研究,结果如图所示。

请根据以上实验结果,回答下列问题:

(1)在物质浓度随时间的变化图中画出最适状态下,反应过程中葡萄糖浓度随时间变化的曲线(请用“1”标注)。在反应速率随酶浓度变化图中画出最适状态下,一开始时将混合物中蔗糖的浓度增加50%,反应过程中反应速率随酶浓度变化的曲线(请用“7”标注)。

(2)在物质浓度随时间的变化图中分别画出,一开始时将混合物中酶的浓度增加50%、反应温度降低10℃,反应温度升高10℃、反应温度升高20℃蔗糖浓度随时间变化的曲线(请用“2”标注酶浓度增加后的变化曲线,用“3”标注温度降低10℃后的变化曲线、用“4”标注温度升高10℃后的变化曲线、用“5”标注温度升高20℃后的变化曲线)。

(3)拜糖平与蔗糖酶的亲和力较蔗糖大15000倍,故能竞争性抑制蔗糖与蔗糖酶的结合。向足量反应混合物中加入一定量的拜糖平后,请在反应速率随酶浓度变化图中画出反应速率随酶浓度变化的曲线(请用“6”标注)。

查看答案和解析>>


同步练习册答案