如图.在平面直角坐标系中.正方形AOCB的边长为6.O为坐标原点.边OC在x轴的正半轴上.边OA在y轴的正半轴上.E是边AB上的一点.直线EC交y轴于F.且S△FAE∶S四边形AOCE=1∶3. ⑴求出点E的坐标,⑵求直线EC的函数解析式. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴,y轴的正半轴上,且满足.

1.求点A、B坐标

2.若点P从点C出发,以每秒1个单位的速度沿射线CB运动,连接AP。设△ABP面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围

3.在(2)的条件下,是否存在点P,使以点A、B、P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由。(本题满分8分)

 

查看答案和解析>>

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F。

(1)求OA、OC的长;

(2)求证:DF为⊙O′的切线;

(3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”。你同意他的看法吗?请充分说明理由。

 

查看答案和解析>>

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.

  (1)求OA、OC的长;

  (2)求证:DF为⊙O′的切线;

  (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

                

 

查看答案和解析>>

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F。

(1)求OA、OC的长;

(2)求证:DF为⊙O′的切线;

(3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”。你同意他的看法吗?请充分说明理由。

 

查看答案和解析>>


同步练习册答案