如图:等边三角形ABC的边长为1 ,P为AB边上的一个动点,过P作PQ⊥BC于Q,过Q作QR⊥AC于R,再过R作RS⊥AB于S .设AP=x,AS=y. (1) 求y与x之间的函数关系式,并写出自变量取值范围. (2) 若SP=1/4,求AP的长. (3) A R Q C B S P 若S.P重合点为T.试说明当P.S不重合时,P.S中的哪一个更接近T点?将上述操作.即按逆时针方向.过垂足作相邻边的垂线.若操作不断进行.试依据你的结论.猜想无论P的初始位置如何.P.S--等这些点最终将会出现怎样的趋势? 查看更多

 

题目列表(包括答案和解析)

等边三角形ABC的边长为3 cm,边长为1 cm的等边三角形RPQ的顶点R与点A重合,PQ两点分别在ACAB上.将△RPQ沿着边ABBCCA顺时针连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动的路径长为________cm

查看答案和解析>>

等边三角形ABC的边AB在直线l上,动点D也在直线l上(不与A,B点重合),△ADE为等边三角形.
(1)如图①,当点D在线段BA的延长线上且△ADE与△ABC在直线l的同侧时,试猜想线段BE与CD的大小关系为
BE=CD
BE=CD

(2)如图②,当点D在线段BA上且ADE与ABC在直线l异测时,(1)中的结论是否仍然成立?若不成立,请说明结论发生了怎样的变化;若成立,说明理由,并求出此时线段BE与CD所在直线的夹角α(0°<α<90°)
(3)当点D在线段AB的延长线上且△ADE与△ABC仍然在直线l的异测时,试在图中画③出相应的图形,并直接判断此时BE与CD的关系(不必说明理由).

查看答案和解析>>

等边三角形ABC的边AB在直线l上,动点D也在直线l上(不与A,B点重合),△ADE为等边三角形.
(1)如图①,当点D在线段BA的延长线上且△ADE与△ABC在直线l的同侧时,试猜想线段BE与CD的大小关系为______
(2)如图②,当点D在线段BA上且ADE与ABC在直线l异测时,(1)中的结论是否仍然成立?若不成立,请说明结论发生了怎样的变化;若成立,说明理由,并求出此时线段BE与CD所在直线的夹角α(0°<α<90°)
(3)当点D在线段AB的延长线上且△ADE与△ABC仍然在直线l的异测时,试在图中画③出相应的图形,并直接判断此时BE与CD的关系(不必说明理由).

查看答案和解析>>

等边三角形是大家熟悉的特殊三角形,除了以前我们所知道的它的一些性质外,它还有很多其它的性质,我们来研究下面的问题:

如图1,点P是等边△ABC的中心,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,易证:BE+CF+AD=EC+AF+BD
问题提出:如图2,若点P是等边△ABC内任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?
为了解决这个问题,现给予证明过程:
证明:连接PA、PB、PC,在Rt△PBE和Rt△PEC中,PB2=PE2+BE2,PC2=PE2+CE2,∴PB2-PC2=BE2-CE2
同理可证:PC2-PA2=CF2-AF2,PA2-PB2=AD2-BD2
将上述三式相加得:BE2-CE2+CF2-AF2+AD2-BD2=0,即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0
∵△ABC是等边三角形,设边长为a.
∴BE+CE=CF+AF=AD+BD=a;
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0;
∴BE-CE+CF-AF+AD-BD=0;
∴BE+CF+AD=EC+AF+BD.
问题拓展:如图3,若点P是等边△ABC的边上任意一点,PD⊥AB于D,PF⊥AC于F,上述结论还成立吗?若成立,请直接写出结论,不用证明;若不成立,请说明理由.
问题解决:
如图4,若点P是等边△ABC外任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>

等边三角形纸片ABC和C'D'E'的边长分别为和2。
(1)如图1,将△C'D'E'放在△ABC上,使得C'和C重合,且D'和E'分别AC在AC和BC上,固定△ABC,将△C'D'E'绕点C逆时针旋转30°得到△C'DE(如图2),连接AD、BE,C'E的延长线交AB于F,试判断线段BE与AD的数量关系,并证明你的结论;
(2)如图,若将△C'DE继续移动,使其在线段CF上沿着CF的方向以每秒1个单位的速度平移,如图3,设△C'DE移动的时间为x秒,△C'DE与△ABC重叠部分的面积为y,求y与x之间的函数关系式,并求出自变量x的取值范围。

查看答案和解析>>


同步练习册答案