解:(1)连结BC交OA于点E -----------1分 ∵AB.AC是⊙O的切线. ∴AB=AC.∠1=∠2. ∴AE⊥BC. ∴∠OEB=90° -----------2分 ∵BD是⊙O的直径. ∴∠DCB=90°. ∴∠DCB=∠OEB. ∴CD∥AO. -----------3分 (2)∵CD∥AO. ∴∠3=∠4. ∵AB是⊙O的切线.DB是直径. ∴∠BCD=∠ABO=90°. ∴△BDC∽△AOB. -----------4分 ∴. ∴ . ∴ -----------5分 ∴0<x<6 -----------6分 知 ----------- 8分 解这个方程组得:----------- 9分 ∴AB=. ----------- 10分 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知:抛物线x轴交于AB两点,与y轴交于点C. 其中点Ax轴的负半轴上,点Cy轴的负半轴上,线段OAOC的长(OA<OC)是方程的两个根,且抛物线的对称轴是直线

(1)求ABC三点的坐标;

(2)求此抛物线的解析式;

(3)若点D是线段AB上的一个动点(与点AB不重合),过点DDEBCAC于点E,连结CD,设BD的长为m,△CDE的面积为S,求Sm的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分12分)已知:抛物线x轴交于AB两点,与y轴交于点C. 其中点Ax轴的负半轴上,点Cy轴的负半轴上,线段OAOC的长(OA<OC)是方程的两个根,且抛物线的对称轴是直线

(1)求ABC三点的坐标;
(2)求此抛物线的解析式;
(3)若点D是线段AB上的一个动点(与点AB不重合),过点DDEBCAC于点E,连结CD,设BD的长为m,△CDE的面积为S,求Sm的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

查看答案和解析>>

(本小题满分12分)已知:抛物线x轴交于AB两点,与y轴交于点C. 其中点Ax轴的负半轴上,点Cy轴的负半轴上,线段OAOC的长(OA<OC)是方程的两个根,且抛物线的对称轴是直线

(1)求ABC三点的坐标;
(2)求此抛物线的解析式;
(3)若点D是线段AB上的一个动点(与点AB不重合),过点DDEBCAC于点E,连结CD,设BD的长为m,△CDE的面积为S,求Sm的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

查看答案和解析>>

(本小题满分12分)已知:抛物线x轴交于AB两点,与y轴交于点C. 其中点Ax轴的负半轴上,点Cy轴的负半轴上,线段OAOC的长(OA<OC)是方程的两个根,且抛物线的对称轴是直线

(1)求ABC三点的坐标;

(2)求此抛物线的解析式;

(3)若点D是线段AB上的一个动点(与点AB不重合),过点DDEBCAC于点E,连结CD,设BD的长为m,△CDE的面积为S,求Sm的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

 

查看答案和解析>>

小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:

(1)如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积)
(2)如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.
(3)利用(2)的结论解决下列问题:
我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.(如图3)若O是△ABC的重心,连结AO并延长交BC于D,则
AO
AD
=
2
3
,这样面积比就有一些“漂亮”结论,利用这些性质解决以下问题.
若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图4),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究
S四边形BCHG
S△AGH
的最大值.

查看答案和解析>>


同步练习册答案