在方程 ()2 + = 3 中 .设 y = .则原方程变形为 查看更多

 

题目列表(包括答案和解析)

材料:为解方程x4-x2-6=0,可将方程变形为(x22-x2-6=0,
然后设x2=y,则(x22=y2,原方程化为y2-y-6=0…①,
解得y1=-2,y2=3.当y1=-2时,x2=-2无意义,舍去;
当y2=3时,x2=3,解得x=±
3

所以原方程的解为x1=
3
,x2=-
3

问题:(1)在原方程得到方程①的过程中,利用
换元
换元
法达到了降次的目的,体现了
转化
转化
 的数学思想;
(2)利用本题的解题方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

材料:为解方程x4-x2-6=0,可将方程变形为(x22-x2-6=0,然后设x2=y,则(x22=y2,原方程化为y2-y-6=0…①,解得y1=-2,y2=3.当y1=-2时,x2=-2无意义,舍去;当y2=3时,x2=3,解得x=±数学公式.所以原方程的解为x1=数学公式,x2=-数学公式
问题:(1)在原方程得到方程①的过程中,利用______法达到了降次的目的,体现了______ 的数学思想;
(2)利用本题的解题方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

材料:为解方程x4-x2-6=0,可将方程变形为(x22-x2-6=0,然后设x2=y,则(x22=y2,原方程化为y2-y-6=0…①,解得y1=-2,y2=3.当y1=-2时,x2=-2无意义,舍去;当y2=3时,x2=3,解得x=±
3
.所以原方程的解为x1=
3
,x2=-
3

问题:(1)在原方程得到方程①的过程中,利用______法达到了降次的目的,体现了______ 的数学思想;
(2)利用本题的解题方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

材料:为解方程x4-x2-6=0,可将方程变形为(x22-x2-6=0,然后设x2=y,则(x22=y2,原方程化为y2-y-6=0…①,解得y1=-2,y2=3.当y1=-2时,x2=-2无意义,舍去;当y2=3时,x2=3,解得x=±.所以原方程的解为x1=,x2=-
问题:(1)在原方程得到方程①的过程中,利用______法达到了降次的目的,体现了______ 的数学思想;
(2)利用本题的解题方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连接O1A、O1B、O2A、O2B和AB.
(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;
(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(3)由(2),若y=2π,则线段O2A所在的直线与⊙O1有何位置关系,为什么?除此之外,它们还有其它的位置关系,写出其它位置关系时x的取值范围.(奖励提示:如果你还能解决下列问题,将酌情另加1~5分,并计入总分.)
在原题的条件下,设∠AO1B的度数为2n,可以发现有些图形的面积S也随∠AO1B变化而变化,试求出其中一个S与n的关系式,并写出n的取值范围.
精英家教网

查看答案和解析>>


同步练习册答案