如果-4是关于一元二次方程的一个根.则k的值为 . 查看更多

 

题目列表(包括答案和解析)

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1﹒x2.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|=
参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值。

查看答案和解析>>

x1x2是关于一元二次方程ax2bxc(a≠0)的两个根,则方程的两个根x1x2和系数abc有如下关系:x1x2=-x1x2.把它称为一元二次方程根与系数关系定理.如果设二次函数yax2bxc(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到AB连个交点间的距离为:AB=|x1x2|=

参考以上定理和结论,解答下列问题:

设二次函数yax2bxc(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;

(2)当△ABC为等边三角形时,求b2-4ac的值.

查看答案和解析>>

x1x2是关于一元二次方程ax2bxc(a≠0)的两个根,则方程的两个根x1x2和系数ab、c有如下关系:x1x2=-x1·x2.把它称为一元二次方程根与系数关系定理.如果设二次函数yax2bxc(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到AB连个交点间的距离为:

AB=|x1x2|=

参考以上定理和结论,解答下列问题:

设二次函数yax2bxc(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;

(2)当△ABC为等边三角形时,求b2-4ac的值.

查看答案和解析>>

如果关于x的一元二次方程(m1)x22x10有两个不相等的实数根,那么m的取值范围是(??? )

Am2????????? Bm2 ??? Cm2m≠1?????????? Dm2m≠1

 

查看答案和解析>>

如果关于x的一元二次方程kx2x+1=0有两个不相等的实数根,那么k的取值范围是(    )

A.-≤k<1且k≠0    B.k<1且k≠0 C.-≤k<1    D.k<1

 

查看答案和解析>>


同步练习册答案