已知sina=, a为锐角.则cosa= .tana= .cota= 查看更多

 

题目列表(包括答案和解析)

已知sinA=0.5,则tanA的值为(  )

查看答案和解析>>

学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
1
2
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3

(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2

(3)如图,已知sinA=
3
5
,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为
2-2
1-k2
2-2
1-k2

查看答案和解析>>

(2013•湛江)阅读下面的材料,先完成阅读填空,再按要求答题:
sin30°=
1
2
,cos30°=
3
2
,则sin230°+cos230°=
1
1
;①
sin45°=
2
2
,cos45°=
2
2
,则sin245°+cos245°=
1
1
;②
sin60°=
3
2
,cos60°=
1
2
,则sin260°+cos260°=
1
1
.③

观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=
1
1
.④
(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;
(2)已知:∠A为锐角(cosA>0)且sinA=
3
5
,求cosA.

查看答案和解析>>

已知:∠A为锐角,且sinA=
817
,则tanA的值为
 

查看答案和解析>>

已知sinA=
1
2
,且∠A为锐角,则∠A=(  )
A、30°B、45°
C、60°D、75°

查看答案和解析>>


同步练习册答案