(2013•徐汇区一模)“数学迷”小楠通过从“特殊到一般”的过程,对倍角三角形(一个内角是另一个内角的2倍的三角形)进行研究.得出结论:如图1,在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,如果∠A=2∠B,那么a
2-b
2=bc.
下面给出小楠对其中一种特殊情形的一种证明方法.
已知:如图2,在△ABC中,∠A=90°,∠B=45°.
求证:a
2-b
2=bc.
证明:如图2,延长CA到D,使得AD=AB.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
∴∠D=45°,∵∠ABC=45°,
∴∠D=∠ABC,又∠C=∠C
∴△ABC∽△BCD
∴
=,即
=∴a
2-b
2=bc
根据上述材料提供的信息,请你完成下列情形的证明(用不同于材料中的方法也可以):
已知:如图1,在△ABC中,∠A=2∠B.
求证:a
2-b
2=bc.