用数来解决形的问题.如图,边长为1的正方形方格纸上,有A.B.C.D 四点. (1)求证:△ADC ∽ △BDA (2)求∠B+∠D度数. 查看更多

 

题目列表(包括答案和解析)

问题提出:   
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小. 而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形. 并利用差的符号来确定它们的大小,即耍比较代数式 M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0;则 M<N.    
问题解决:    
如图①.把边长为 a+b(a≠b)的大正方形分割成两个边长分别是 a、b 的小正方形及两个矩形,试比较两个小正方形的面积之和 M与两个矩形面积之和N 的大小.类比应用:
(1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克、元/千克(a·b是正数.且a≠b),试比较小丽和小颖所购商品的平均价格的高低.   
(2)试比技图②、图③两个矩形的周长 M, 、N, 的大小(b>c).

查看答案和解析>>

图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形
(1)你认为图b中的阴影部分的正方形的边长等于多少(    );
(2)请用两种不同的方法求图b中阴影部分的面积。方法1:(    ),方法2:(    );
(3)观察图b你能写出下列三个代数式之间的等量关系吗?
代数式:(m+n)2,(m-n)2,mn:(    )。
(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2=(    )。我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数等式也可以用这种形式表示,请写出图中所表示的代数恒等式(    )。

查看答案和解析>>

请阅读下列材料:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=数学公式,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PB是等边三角形(可证),而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.进而把AB放在Rt△APB(可证得)中,用勾股定理求出等边△ABC的边长为数学公式.问题得到解决.?
[思路分析]首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中进行研究.旋转60度以后BP就成了BP′,PC成了P′A,借助等量关系BP′=PP′,于是△APP′就可以计算了.
解决问题:
请你参考李明同学旋转的思路,探究并解决下列问题:
如图3,在正方形ABCD内有一点P,且PA=数学公式,BP=数学公式,PC=1.求∠BPC度数的大小和正方形ABCD的边长.

查看答案和解析>>

式子数学公式可以理解为“以a、b为直角边长的直角三角形的斜边长”,利用这个知识,我们可以恰当地构造图形来解决一些数学问题.比如在解“已知a+b=2,则数学公式的最小值为________”时,我们就可以构造两个直角三角形,转化为“求两个直角三角形的斜边和最小是多少”的问题.请你根据所给图形和题意,在横线上填上正确的答案.

查看答案和解析>>

我们发现,用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题这种方法称为等面积法,这是一种重要的数学方法.请你用等面积法来探究下列两个问题:

(1)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,请你用它来验证勾股定理;
(2)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC= 4,BC=3,求CD的长度.

查看答案和解析>>


同步练习册答案