已知抛物线的顶点坐标为 .当x满足 时.y随x的增大而减小. 查看更多

 

题目列表(包括答案和解析)

已知抛物线y=
1
6
x2+bx+c
经过点A(5,0),且满足bc=0,b<c.
(1)求该抛物线的解析式;
(2)点M在直线y=2x上,点P在抛物线y=
1
6
x2+bx+c
上,求当以O、A、P、M为顶点的四边形为平行四边形时的P点坐标.

查看答案和解析>>

已知抛物线F:y=ax2+bx+c的顶点为P.
(Ⅰ)当a=1,b=-2,c=-3,求该抛物线与x轴公共点的坐标;
(Ⅱ)设抛物线F:y=ax2+bx+c与y轴交于点A,过点P作PD⊥x轴于点D.平移该抛物线使其经过点A、D,得到抛物线F:y=a′x2+b′x+c′(如图所示).若a、b、c满足了b2=2ac,求b:b′的值;
(Ⅲ)若a=3,b=2,且当-1<x<1时,抛物线F与x轴有且只有一个公共点,求c的取值范围.

查看答案和解析>>

已知抛物线F:y=ax2+bx+c的顶点为P.
(Ⅰ)当a=1,b=-2,c=-3,求该抛物线与x轴公共点的坐标;
(Ⅱ)设抛物线F:y=ax2+bx+c与y轴交于点A,过点P作PD⊥x轴于点D.平移该抛物线使其经过点A、D,得到抛物线F:y=a′x2+b′x+c′(如图所示).若a、b、c满足了b2=2ac,求b:b′的值;
(Ⅲ)若a=3,b=2,且当-1<x<1时,抛物线F与x轴有且只有一个公共点,求c的取值范围.

查看答案和解析>>

已知抛物线F:y=ax2+bx+c的顶点为P.
(Ⅰ)当a=1,b=-2,c=-3,求该抛物线与x轴公共点的坐标;
(Ⅱ)设抛物线F:y=ax2+bx+c与y轴交于点A,过点P作PD⊥x轴于点D.平移该抛物线使其经过点A、D,得到抛物线F:y=a′x2+b′x+c′(如图所示).若a、b、c满足了b2=2ac,求b:b′的值;
(Ⅲ)若a=3,b=2,且当-1<x<1时,抛物线F与x轴有且只有一个公共点,求c的取值范围.

查看答案和解析>>

已知抛物线F:y=ax2+bx+c的顶点为P.
(Ⅰ)当a=1,b=-2,c=-3,求该抛物线与x轴公共点的坐标;
(Ⅱ)设抛物线F:y=ax2+bx+c与y轴交于点A,过点P作PD⊥x轴于点D.平移该抛物线使其经过点A、D,得到抛物线F:y=a′x2+b′x+c′(如图所示).若a、b、c满足了b2=2ac,求b:b′的值;
(Ⅲ)若a=3,b=2,且当-1<x<1时,抛物线F与x轴有且只有一个公共点,求c的取值范围.

查看答案和解析>>


同步练习册答案