如图.已知多面体ABC-DEFG中.AB.AC.AD两两 互相垂直.平面ABC∥平面DEF闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缁炬儳顭烽弻鏇熺箾閻愵剚鐝旂紒鐐劤閻忔繈鍩為幋锔藉亹鐎规洖娴傞弳锟犳⒑閹肩偛鈧洟鎮ц箛娑樼疅闁归棿鐒﹂崑瀣煕椤愶絿绠橀柣鐔村姂濮婅櫣绱掑Ο铏圭懆闂佽绻戝畝鍛婁繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊虹憴鍕剹闁搞劑浜跺顐c偅閸愨晝鍘介柟鍏肩暘閸ㄥ宕弻銉︾厵闁告垯鍊栫€氾拷查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图,已知多面体ABCDE中,AB⊥平面ACDDE⊥平面ACDAC=AD=CD=DE=2,AB=1,FCD的中点.

(Ⅰ)求证:AF⊥平面CDE

(Ⅱ)求面ACD和面BCE所成锐二面角的大小.

 

查看答案和解析>>

19.(本小题满分12分)

如图,已知矩形所在平面与矩形所在平面垂直,=1,是线段的中点.

(1)求证:平面

(2)求二面角的正弦值;

(3)求多面体的体积.

 

 

 

 

 

查看答案和解析>>

(本小题满分12分)
如图,已知多面体ABCDE中,AB⊥平面ACDDE⊥平面ACDAC=AD=CD=DE=2,AB=1,FCD的中点.

(Ⅰ)求证:AF⊥平面CDE
(Ⅱ)求面ACD和面BCE所成锐二面角的大小.

查看答案和解析>>

(本小题满分12分)如图,已知矩形所在平面与矩形所在平面垂直,=1,是线段的中点.
(1)求证:平面
(2)求多面体的表面积;
(3)求多面体的体积.

查看答案和解析>>

(本小题满分12分)如下图,某隧道设计为双向四车道,车道总宽20 m,要求通行车辆限高5 m,隧道全长2.5 km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆.

(1)若最大拱高h为6 m,则隧道设计的拱宽l是多少?

(2)若要使隧道上方半椭圆部分的土方工程量最小,则应如何设计拱高h和拱宽l

(已知:椭圆+=1的面积公式为S=,柱体体积为底面积乘以高.)

(3)为了使隧道内部美观,要求在拱线上找两个点MN,使它们所在位置的高度恰好是限高5m,现以MN以及椭圆的左、右顶点为支点,用合金钢板把隧道拱线部分连接封闭,形成一个梯形,若l=30m,梯形两腰所在侧面单位面积的钢板造价是梯形顶部单位面积钢板造价的倍,试确定MN的位置以及的值,使总造价最少.

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷