题目列表(包括答案和解析)
(本小题满分14分)已知点F椭圆E:的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且是边长为2的正三角形;又椭圆E上的P、Q两点关于直线对称.
(1)求椭圆E的方程;(2)当直线过点()时,求直线PQ的方程;
(3)若点C是直线上一点,且=,求面积的最大值.
本小题满分14分)
已知椭圆的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且的最小值不小于。
(1)证明:椭圆上的点到F2的最短距离为;
(2)求椭圆的离心率e的取值范围;
(3)设椭圆的短半轴长为1,圆F2与轴的右交点为Q,过点Q作斜率为的直线与椭圆相交于A、B两点,若OA⊥OB,求直线被圆F2截得的弦长S的最大值。
(本小题满分14分)
已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com