已知双曲线和椭圆:有公共的焦点.它们的离心率分别是和.且.求双曲线的方程. 查看更多

 

题目列表(包括答案和解析)

已知双曲线C1:x2-y2=m(m>0)与椭圆C2
x2
a2
+
y2
b2
=1
有公共焦点F1F2,点N(
2
,1)
是它们的一个公共点.
(1)求C1,C2的方程;
(2)过点F2且互相垂直的直线l1,l2与圆M:x2+(y+1)2=4分别相交于点A,B和C,D,求|AB|+|CD|的最大值,并求此时直线l1的方程.

查看答案和解析>>

已知双曲线C1:x2-y2=m(m>0)与椭圆有公共焦点F1F2,点是它们的一个公共点.
(1)求C1,C2的方程;
(2)过点F2且互相垂直的直线l1,l2与圆M:x2+(y+1)2=4分别相交于点A,B和C,D,求|AB|+|CD|的最大值,并求此时直线l1的方程.

查看答案和解析>>

已知椭圆与双曲线有公共焦点,且离心率为.A,B分别是椭圆C的左顶点和右顶点.点S是椭圆C上位于x轴上方的动点.直线AS,BS分别与直线l分别交于M,N两点.

(1)求椭圆C的方程;

(2)延长MB交椭圆C于点P,若PS⊥AM,试证明MS2=MB·MP.

(3)当线段MN的长度最小时,在椭圆C上是否存在点T,使得△TSB的面积为?若存在确定点T的个数,若不存在,说明理由.

查看答案和解析>>

已知双曲线C1和椭圆C2数学公式有公共的焦点,它们的离心率分别是e1和e2,且数学公式,求双曲线C1的方程.

查看答案和解析>>

已知双曲线C1和椭圆C2有公共的焦点,它们的离心率分别是e1和e2,且,求双曲线C1的方程.

查看答案和解析>>


同步练习册答案