已知两圆方程分别为:..则两圆的公切线方程为(A) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且其焦点F(c,0)(c>0)到相应准线l的距离为3,过焦点F的直线与椭圆交于A,B两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设M为椭圆的右顶点,则直线AM,BM与准线l分别交于P,Q两点(P,Q两点不重合),求证:
FP
FQ
=0..

查看答案和解析>>

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)过点P(3,1),其左、右焦点分别为F1,F2,且
F1P
F2P
=-6

(1)求椭圆E的方程;
(2)若M,N是直线x=5上的两个动点,且F1M⊥F2N,则以MN为直径的圆C是否过定点?请说明理由.

查看答案和解析>>

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
d2
d1
=
2
2

(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
a2
c
、点F(-c,0)、曲线C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断
 
 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
   C1  C2
 x  2  
2
 4  3
 y  0  
2
2
 4 -2
3
则C1、C2的标准方程分别为
 
 

查看答案和解析>>

已知:圆O1过点(0,1),并且与直线y=-l相切,则圆O1的轨迹为C,过一点A(l,1)作直线l,直线l与曲线C交于不同两点M、N,分别在M、N两点处作曲线C的切线l1,l2,直线l1,l2的交点为K.
(I)求曲线C的轨迹方程;
(Ⅱ)求证:直线l1,l2的交点K在一条直线上,并求出此直线方程.

查看答案和解析>>


同步练习册答案