题目列表(包括答案和解析)
(本小题满分12分)
已知A(-3,0),B(3,0),三角形PAB的内切圆的圆心M在直线上移动。
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)某同学经研究作出判断,曲线C在P点处的切线恒过点M,试问:其判断是否正确?若正确,请给出证明;否则说明理由。
(本小题满分12分)
已知直线所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到F的最小距离为2
(1)求椭圆C的标准方程;
(2)已知圆O:,直线:,当点在椭圆C上运动时,直线与圆O是否相交于两个不同的点A,B?若相交,试求弦长|AB|的取值范围,否则说明理由.
(本小题满分12分)
已知直线所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到F的最小距离为2
(1)求椭圆C的标准方程;
(2)已知圆O:,直线:,当点在椭圆C上运动时,直线与圆O是否相交于两个不同的点A,B?若相交,试求弦长|AB|的取值范围,否则说明理由.
(本小题满分12分)
已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线L: 与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以M N为直径的圆经过椭圆的右顶点A.求证:直线过定点,并求出定点的坐标.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com