18.对于“充要条件 .请完成如下开放型填空题: (1)写出m+n>0的一个充分而不必要条件可以是 , (2)写出x=3的一个必要而不充分条件可以是 , (3)不等式ax2+2ax+1>0的解集R的一个充要条件是 . 查看更多

 

题目列表(包括答案和解析)

设P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N)是二次曲线C上的点,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2构成了一个公差为d(d≠0)的等差数列,其中O是坐标原点.记Sn=a1+a2+…+an
(1)若C的方程为
x2
100
+
y2
25
=1,n=3.点P1(10,0)及S3=255,求点P3的坐标;(只需写出一个)
(2)若C的方程为
x2
a2
+
y2
b2
=1
(a>b>0).点P1(a,0),对于给定的自然数n,当公差d变化时,求Sn的最小值;
(3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,写出符合条件的点P1,P2,…Pn存在的充要条件,并说明理由.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(ad+bc,bd-ac).
(1)计算:(2,3)⊙(-1,4).
(2)请用数学符号语言表述运算⊙满足交换律,并给出证明.
(3)若“A中的元素I=(x,y)”是“对?α∈A,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I.

查看答案和解析>>

16、中学数学中存在许多关系,比如“相等关系”、“平行关系”等等、如果集合A中元素之间的一个关系“-”满足以下三个条件:
(1)自反性:对于任意a∈A,都有a-a;
(2)对称性:对于a,b∈A,若a-b,则有b-a;
(3)对称性:对于a,b,c∈A,若a-b,b-c,则有a-c、
则称“-”是集合A的一个等价关系、例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立)、请你再列出两个等价关系:
答案不唯一,如“图形的全等”、“图形的相似”、“非零向量的共线”、“命题的充要条件”等等

查看答案和解析>>

(2012•西城区一模)对于数列An:a1,a2,…,an(ai∈N,i=1,2,…,n),定义“T变换”:T将数列An变换成数列Bn:b1,b2,…,bn,其中bi=|ai-ai+1|(i=1,2,…,n-1),且bn=|an-a1|,这种“T变换”记作Bn=T(An).继续对数列Bn进行“T变换”,得到数列Cn,…,依此类推,当得到的数列各项均为0时变换结束.
(Ⅰ)试问A3:4,2,8和A4:1,4,2,9经过不断的“T变换”能否结束?若能,请依次写出经过“T变换”得到的各数列;若不能,说明理由;
(Ⅱ)求A3:a1,a2,a3经过有限次“T变换”后能够结束的充要条件;
(Ⅲ)证明:A4:a1,a2,a3,a4一定能经过有限次“T变换”后结束.

查看答案和解析>>

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=
0   当i∉AJ
1        当i∈AJ时  

(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:
5cmn
-
cmcn
>1对任何正整数m,n都成立.(第1小题用表)
1 2 3 4 5 6 7
1 0
2 0
3 0
4 0
5 0
6 0
7 0

查看答案和解析>>


同步练习册答案