18. 已知抛物线C1:y=x2+2x和C:y=-x2+a.如果直线l同时是C1和C2的切线.称l是C1和C2的公切线.公切线上两个切点之间的线段.称为公切线段. (Ⅰ)a取什么值时.C1和C2有且仅有一条公切线?写出此公切线的方程, (Ⅱ)若C1和C2有两条公切线.证明相应的两条公切线段互相平分. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图,设抛物线C1的准线与x轴交于F1,焦点为F2;以F1F2为焦点,离心率的椭圆C2与抛物线C1x轴上方的交点为P

m = 1时,求椭圆C2的方程;

当△PF1F2的边长恰好是三个连续的自然数时,求抛物线方程;此时设⊙C1、⊙C2……⊙Cn是圆心在上的一系列圆,它们的圆心纵坐标分别为a1a2……an,已知a1 = 6,a1 > a2 >……> an > 0,又⊙Ckk = 1,2,…,n)都与y轴相切,且顺次逐个相邻外切,求数列{an}的通项公式.

(第21题图)

 
 

查看答案和解析>>

(本小题满分12分)

        已知椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从它们每条曲线上至少取两个点,将其坐标记录于下表中:   

x

5

4

y

2

0

-4

 

(Ⅰ)求C1和C2的方程;

   (Ⅱ)过点S(0,-)且斜率为k的动直线l交椭圆C1于A、B两点,在y轴上是否存在定点D,使以线段AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.

 

 

查看答案和解析>>

(本小题满分12分)
已知椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从它们每条曲线上至少取两个点,将其坐标记录于下表中:   

x
5

4


y
2
0
-4



(Ⅰ)求C1和C2的方程;
(Ⅱ)过点S(0,-)且斜率为k的动直线l交椭圆C1于A、B两点,在y轴上是否存在定点D,使以线段AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.

查看答案和解析>>


同步练习册答案