题目列表(包括答案和解析)
π |
3 |
π |
6 |
下表是芝加哥1951~1981年月平均气温(华氏).
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
平均气温 | 21.4 | 26.0 | 36.0 | 48.8 | 59.1 | 68.6 |
月份 | 7 | 8 | 9 | 10 | 11 | 12 |
平均气温 | 73.0 | 71.9 | 64.7 | 53.5 | 39.8 | 27.7 |
(1)以月份为x轴,x=月份-1,以平均气温为y轴,描出散点图;
(2)用正弦曲线去拟合这些数据;
(3)这个函数的周期是多少?
(4)估计这个正弦曲线的振幅A;
(5)选择下面四个函数模型中哪一个最适合这些数据?
①=cos();②=cos();③=cos();④=sin().
下面给出的四个命题中:
①以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为;
②若,则直线与直线相互垂直;
③命题 “,使得”的否定是“,都有”;
④将函数的图象向右平移个单位,得到函数的图象。
其中是真命题的有 (将你认为正确的序号都填上)。
下表是芝加哥从1978年到2008年的月平均气温(华氏).
(1)以月份为x轴,x=月份-1,以平均气温为y轴,描出散点图;
(2)用正弦曲线去拟合这些数据;
(3)这个函数的周期是多少?
(4)估计这个正弦曲线的振幅A(精确到度);
(5)下面四个函数模型中哪一个最适合这些数据?
[ ]
A.; |
B.; |
C.; |
D.; |
(6)请再写出一个与(5)中所选答案等价的模型来描述这些数据.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com