作曲线的切线切点为Q1.设Q1点在x轴上的投影是点p1.又过点p1作曲线c的切线切点为Q2.设Q2在x轴上的投影是p2-.依此下去.得到一系列点Q1.Q2.-.Qn.-.设点Qn的横坐标为an (1)求证:, (2)求证:, (3)求证:(注:) 高三第三次质量检测 1-5 D A A C A 6-10 D D B C B 11-12 B C 查看更多

 

题目列表(包括答案和解析)

过点P(1,0)作曲线C:的切线,切点为Q1,设Q1轴上的投影是Pl,又过P1作曲线C的切线,切点为Q2,设Q2轴上的投影是P2,……依次下去,得到一系列Q1、Q2、…、Q,设点Q横坐标为

(1)求的值,并求出的关系;

(2)令,设数列{}的前项和为,求.

查看答案和解析>>

已知函数,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N,
(1)当t=2时,求函数f(x)的单调递增区间;
(2)设|MN|=g(t),试求函数g(t)的表达式;
(3)在(2)的条件下,若对任意的正整数n,在区间[2,n+]内,总存在m+1个数a1,a2,....,am
am+1,使得不等式g(a1)+g(a2)+...+g(am)<g(am+1)成立,求m的最大值

查看答案和解析>>

已知函数,过点P(1,0)作曲线y=f(x)的两条切线PM、PN,切点分别为M、N.

(1)当t=2时,求函数f(x)的单调递增区间;

(2)设|MN|=g(t),试求函数g(t)的表达式

(3)在(2)的条件下,若对任意的正整数n,在区间[]内总存在m+1个实数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

已知函数,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.

(1)当t=2时,求函数f(x)的单调递增区间;

(2)设|MN|=g(t),试求函数g(t)的解析式;

(3)在(2)的条件下,若对任意的正整数n,在区间内总存在m+1个实数λ1,λ2……λm,λm+1使得不等式g(λ1)+g(λ2)+…+g(λm)<g(λm+1)成立,求m的最大值.

查看答案和解析>>

过点P(1,0)作曲线C:y=xk(x∈(0,+∞),k∈N*,k>1)的切线,切点为M1,设M1在x轴上的投影是点P1.又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2….依此下去,得到一系列点M1,M2,…,Mn,…,设它们的横坐标a1,a2,…,an,…,构成数列{an}.(a1≠0).
(1)求证数列{an}是等比数列,并求其通项公式;
(2)求证:an≥1+
n
k+1

(3)若k=2,记bn=
n
i=0
(-1)i
a
2
n-i
C
i
2n-i+1
,求b2010

查看答案和解析>>


同步练习册答案