题目列表(包括答案和解析)
已知,(其中)
⑴求及;
⑵试比较与的大小,并说明理由.
【解析】第一问中取,则; …………1分
对等式两边求导,得
取,则得到结论
第二问中,要比较与的大小,即比较:与的大小,归纳猜想可得结论当时,;
当时,;
当时,;
猜想:当时,运用数学归纳法证明即可。
解:⑴取,则; …………1分
对等式两边求导,得,
取,则。 …………4分
⑵要比较与的大小,即比较:与的大小,
当时,;
当时,;
当时,; …………6分
猜想:当时,,下面用数学归纳法证明:
由上述过程可知,时结论成立,
假设当时结论成立,即,
当时,
而
∴
即时结论也成立,
∴当时,成立。 …………11分
综上得,当时,;
当时,;
当时,
在下列命题中,
①两个复数不能比较大小;
②的一个充要条件是z与它的共轭复数相等。
③若是纯虚数,则实数;
④若是两个相等的实数,则是纯虚数;
其中真命题的序号为 .
(本题满分14分)抛物线经过点、与点,其中,,设函数在和处取到极值。
(1)用表示;
(2) 比较的大小(要求按从小到大排列);
(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求。
已知等差数列满足,设是数列的前项和,记
(1)求;
(2)比较与(其中)的大小;
(3)如果函数对一切大于1的正整数其函数值都小于零,那么、应满足什么条件。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com