设为实数.成等比数列.且成等差数列.则的值是 . 查看更多

 

题目列表(包括答案和解析)

设等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;等差数列{bn}满足2n2-(t+bn)n+
32
bn
=0(t∈R,n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ) 若对任意n∈N*,有anbn+1+λanan+1≥bnan+1成立,求实数λ的取值范围;
(Ⅲ)对每个正整数k,在ak和a k+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

等差数列{an}的各项均为正整数,a1=3,前n项和为Sn,等比数列{bn}中,b1=1,且b2•S2=16,{ban}是公比为4的等比数列
(1)求an与bn
(2)设Cn=
1
S1
+
1
S2
+
1
S2
+…+
1
Sn
,若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+
3
4
>Cn恒成立,求实数t的取值范围.

查看答案和解析>>

数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列,
(1)求数列{an}的通项公式;
(2)若bn=log2|an|,设Tn为数列{
1bnbn+1
}
的前n项和,若Tn≤λbn+1对一切n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

等差数列{a}是递增数列,前n项和为Sn,且a1,a2,a5成等比数列,S5=a32
(1)求通项an
(2)令bn=
1
2
(
an+1
an
+
an
an+1
)
,设Tn=b1+b2+…+bn-n,若M>Tn>m对一切正整数n恒成立,求实数M、m的取值范围;
(3)试构造一个函数g(x),使f(n)=a1g(1)+a2g(2)+…+ang(n)<
1
3
(n∈N+)
恒成立,且对任意的m∈(
1
4
1
3
)
,均存在正整数N,使得当n>N时,f(n)>m.

查看答案和解析>>

等差数列{an}的各项均为正整数,a1=3,前n项和为Sn,等比数列{bn}中,b1=1,且b2•S2=16,{ban}是公比为4的等比数列
(1)求an与bn
(2)设Cn=
1
S1
+
1
S2
+
1
S2
+…+
1
Sn
,若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+
3
4
>Cn恒成立,求实数t的取值范围.

查看答案和解析>>


同步练习册答案