已知不等式 (1)解此不等式, (2)若在不等式的解中.求的范围. 查看更多

 

题目列表(包括答案和解析)

  已知  设P:函数在R上单调递减;  Q:不等式的解集为R,若“PQ”是真命题,“PQ”是假命题,求的取值范围.

[解题思路]:“PQ”是真命题,“PQ”是假命题,根据真假表知,PQ之中一真一假,因此有两种情况,要分类讨论.

查看答案和解析>>

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>

已知函数时都取得极值.

(1)求的值及函数的单调区间;www.7caiedu.cn     

(2)若对,不等式恒成立,求的取值范围.

【解析】根据的两个根,可求出a,b的值,然后利用导数确定其单调区间即可.

(2)此题本质是利用导数其函数f(x)在区间[-1,2]上的最大值,然后利用,即可解出c的取值范围.

 

查看答案和解析>>

已知函数其中为自然对数的底数, .(Ⅰ)设,求函数的最值;(Ⅱ)若对于任意的,都有成立,求的取值范围.

【解析】第一问中,当时,.结合表格和导数的知识判定单调性和极值,进而得到最值。

第二问中,∵,      

∴原不等式等价于:,

, 亦即

分离参数的思想求解参数的范围

解:(Ⅰ)当时,

上变化时,的变化情况如下表:

 

 

1/e

时,

(Ⅱ)∵,      

∴原不等式等价于:,

, 亦即

∴对于任意的,原不等式恒成立,等价于恒成立,

∵对于任意的时, (当且仅当时取等号).

∴只需,即,解之得.

因此,的取值范围是

 

查看答案和解析>>

已知函数数学公式,且此函数图象过点(1,5)
(1)求实数m的值并判断f(x)的奇偶性;
(2)若函数f(x)在(0,2)上单调递减,解关于实数x的不等式数学公式

查看答案和解析>>


同步练习册答案