如图5所示..分别世.的直径.与两圆所在的平面均垂直..是的直径.,. (I)求二面角的大小, (II)求直线与所成的角. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点的中点。

   (I)求证:

   (II)求证://平面

 

 

 

查看答案和解析>>

(本题满分14分)如图,已知二次函数,直线lx = 2,直线ly = 3tx(其中1< t < 1,t为常数);若直线l、l与函数的图象所围成的封闭图形如图(5)阴影所示.(1)求y = ;(2)求阴影面积s关于t的函数s = u(t)的解析式;(3)若过点A(1,m)(m≠4)可作曲线s=u(t)(tR)的三条切线,求实数m的取值范围.

查看答案和解析>>

(本题14分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图)。

(1)分别写出两种产品的收益与投资的函数关系;

(2)该家庭现有20万元资金,全部用于理财投资,

问:怎样分配资金能使投资获得最大收益,其最大

收益为多少万元?

    

查看答案和解析>>

精英家教网本题有(1),(2),(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑.
(1)选修4-2:矩阵与变换
如图所示:△OAB在伸缩变换M作用下变为△OA1B1
(i)求矩阵M的特征值及相应的特征向量;
(ii)求逆矩阵M-1以及(M-120
(2)选修4-4:坐标系与参数方程.
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
(θ为参数),曲线C2的参数方程为
x=2t
y=t+1
(t为参数)
(i)若将曲线C1与C2上各点的横坐标都缩短为原来的一半,分别得到曲线C1和C2,求出曲线C1和C2的普通方程;
(ii)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求证:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求实数m的取值范围.

查看答案和解析>>

(本题满分14分)

某甜品店制作蛋筒冰淇淋,其上半部分呈半球形,下半部分呈圆锥形(如图)。现把半径为10cm的圆形蛋皮分成5个扇形,用一个扇形蛋皮围成锥形侧面(蛋皮厚度忽略不计),求该蛋筒冰淇淋的表面积和体积(精确到0.01)

 

查看答案和解析>>


同步练习册答案