19. 设.点P(.0)是函数的图象的一个公共点.两函数的图象在点P处有相同的切线. (Ⅰ)用表示a.b.c, (Ⅱ)若函数在上单调递减.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

(本小题满分14分)已知函数f(x)=aexg(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求证:对任意n ÎN*,    f(n)+g(n)>2n

  (Ⅲ) 设y =g(x-1)的图象为C1h(x)=-x2+bx的图象为C2,若C1C2相交于PQ,过PQ中点垂直于x轴的直线分别交C1C2MN,问是否存在实数b,使得C1M处的切线与C2N处的切线平行?说明你的理由.

查看答案和解析>>

(本小题满分14分)已知函数f(x)=aexg(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求证:对任意n ÎN*,    f(n)+g(n)>2n

  (Ⅲ) 设y =g(x-1)的图象为C1h(x)=-x2+bx的图象为C2,若C1C2相交于PQ,过PQ中点垂直于x轴的直线分别交C1C2MN,问是否存在实数b,使得C1M处的切线与C2N处的切线平行?说明你的理由.

查看答案和解析>>

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

(本小题满分14分)

(1)已知等差数列{an}的前n项和为Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),证明;=

(2)注意到(1)中Sn与n的函数关系,我们得到命题:设抛物线x2=2py(p>0)的图像上有不同的四点A,B,C,D,若xA,xB,xC,xD分别是这四点的横坐标,且xA+xB=xC+xD,则AB∥CD,判定这个命题的真假,并证明你的结论

(3)我们知道椭圆和抛物线都是圆锥曲线,根据(2)中的结论,对椭圆+ =1(a>b>0)提出一个有深度的结论,并证明之.

 

查看答案和解析>>


同步练习册答案