27.在某校举行的数学竞赛中.全体参赛学生的竞赛成绩近似服从正态分布.已知成绩在90分以上的学生有12名. (Ⅰ).试问此次参赛学生总数约为多少人? (Ⅱ).若该校计划奖励竞赛成绩排在前50名的学生.试问设奖的分数线约为多少分? 可共查阅的标准正态分布表 0 1 2 3 4 5 6 7 8 9 1.2 1.3 1.4 1.9 2.0 2.1 0.8849 0.9032 0.9192 0.9713 0.9772 0.9821 0.8869 0.9049 0.9207 0.9719 0.9778 0.9826 0.888 0.9066 0.9222 0.9726 0.9783 0.9830 0.8907 0.9082 0.9236 0.9732 0.9788 0.9834 0.8925 0.9099 0.9251 0.9738 0.9793 0.9838 0.8944 0.9115 0.9265 0.9744 0.9798 0.9842 0.8962 0.9131 0.9278 0.9750 0.9803 0.9846 0.8980 0.9147 0.9292 0.9756 0.9808 0.9850 0.8997 0.9162 0.9306 0.9762 0.9812 0.9854 0.9015 0.9177 0.9319 0.9767 0.9817 0.9857 点评:本小题主要考查正态分布.对独立事件的概念和标准正态分布的查阅.考查运用概率统计知识解决实际问题的能力. 解:(Ⅰ)设参赛学生的分数为.因为-N.由条件知. P(≥90)=1-P(<90)=1-F(90)=1-=1-(2)=1-0.9772=0.228. 这说明成绩在90分以上的学生人数约占全体参赛人数的2.28%.因此. 参赛总人数约为≈526(人). (Ⅱ)假定设奖的分数线为x分.则P(≥x)=1-P(<x)=1-F(90)=1-==0.0951.即=0.9049.查表得≈1.31.解得x=83.1. 故设奖得分数线约为83.1分. 查看更多

 

题目列表(包括答案和解析)

(06年湖北卷理)(10分)

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)、试问此次参赛学生总数约为多少人?

(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可共查阅的(部分)标准正态分布表

0

1

2

3

4

5

6

7

8

9

1.2

1.3

1.4

1.9

2.0

2.1

0.8849

0.9032

0.9192

0.9713

0.9772

0.9821

0.8869

0.9049

0.9207

0.9719

0.9778

0.9826

0.888

0.9066

0.9222

0.9726

0.9783

0.9830

0.8907

0.9082

0.9236

0.9732

0.9788

0.9834

0.8925

0.9099

0.9251

0.9738

0.9793

0.9838

0.8944

0.9115

0.9265

0.9744

0.9798

0.9842

0.8962

0.9131

0.9278

0.9750

0.9803

0.9846

0.8980

0.9147

0.9292

0.9756

0.9808

0.9850

0.8997

0.9162

0.9306

0.9762

0.9812

0.9854

0.9015

0.9177

0.9319

0.9767

0.9817

0.9857

查看答案和解析>>


同步练习册答案