题目列表(包括答案和解析)
定义数列:
,且对任意正整数
,有
.
(1)求数列的通项公式与前
项和
;
(2)问是否存在正整数,使得
?若存在,则求出所有的正整数对
;若不存在,则加以证明.
对于任意的(
不超过数列的项数),若数列的前
项和等于该数列的前
项之积,则称该数列为
型数列。
(1)若数列是首项
的
型数列,求
的值;
(2)证明:任何项数不小于3的递增的正整数列都不是型数列;
(3)若数列是
型数列,且
试求
与
的递推关系,并证明
对
恒成立。
对于任意的(
不超过数列的项数),若数列的前
项和等于该数列的前
项之积,则称该数列为
型数列。
(1)若数列是首项
的
型数列,求
的值;
(2)证明:任何项数不小于3的递增的正整数列都不是型数列;
(3)若数列是
型数列,且
试求
与
的递推关系,并证明
对
恒成立。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com