14.在数列和中.bn是an和an+1的等差中项.a1=2且对任意都有.则的通项bn= . 查看更多

 

题目列表(包括答案和解析)

在数列{an}中,a1=1,an+1=2an+2n
(Ⅰ)设bn=
an2n-1
.证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

在数列{an}中,a1=1,an+1=2an+2n
(1)设bn=
an
2n-1
(n∈N*),证明:数列{bn}是等差数列;
(2)设数列{an}的前n项和为Sn,求
lim
n→∞
Sn
n•2n+1
的值;
(3)设cn=2bn-1,数列{cn}的前n项和为Tndn=
Tn
4
a
2
n
-Tn
,是否存在实数t,使得对任意的正整数n和实数m∈[1,2],都有d1+d2+d3+…+dn≥log8(2m+t)成立?请说明理由.

查看答案和解析>>

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
bn+2=3log
1
4
an(n∈N*)

(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an•bn,求{cn}的前n项和Sn

查看答案和解析>>

在数列{an}中,a1=2,an+1-2an=0(n∈N*),bn是an和an+1的等差中项,设Sn为数列{bn}的前n项和,则S6=
 

查看答案和解析>>

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
bn+2=3log
1
4
an(n∈N*)

(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn

查看答案和解析>>


同步练习册答案