编号为1.2.3的三位学生随意入座编号为1.2.3的三个座位.每位学生坐一个座位.设与座位编号相同的学生的个数是. (Ⅰ)求随机变量的概率分布, (Ⅱ)求随机变量的数学期望和方差. 如图.已知在等边△ABC中.AB=3.O为中心.过O的直线交AB于M.AC于N.设 ∠AOM=(60°≤≤120°).当分别为何值时.取得最大值和最小值. 在△ABC中.CD为∠C的平分线.AC=4.BC=2.过B作BN⊥CD于N.延长 BN交CA于E.作AM⊥CD.交CD的延长线于M.将图形沿CD折起.使∠BNE =120°.求: (Ⅰ)折起后AM与BC所成的角, (Ⅱ)折起后所得的线段AB的长度. 已知数列的通项为.前n项和为.且是与2的等差中项,数列 中.=1.点在直线x-y+2=0上. (Ⅰ)求数列.的通项公式, (Ⅱ)设的前n项和为.试比较与2的大小, (Ⅲ)设.求的最小整数c. 一条斜率为1的直线l与离心率为的双曲线交于P.Q两点. 直线l与y轴交于R点.且.求直线与双曲线的方程. 已知函数. (Ⅰ)若x>1.求证:, (Ⅱ)是否存在实数k.使方程有四个不同的实根?若存在. 求出k的取值范围,若不存在.说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.

(1)如果按性别比例分层抽样,则样本中男、女生各有多少人;

(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;

物理成绩依次为:72,77,80,84,88,90,93,95,

①若规定80分(含80分)以上为良好,90分(含90分)以上为优秀,在良好的条件下,求两科均为优秀的概率;

②若这8位同学的数学、物理分数事实上对应下表:

学生编号

1

2

3

4

5

6

7

8

数学分数

60

65

70

75

80

85

90

95[来源:Z&xx&k.Com]

物理分数

72

77

80

84

88

90

93

95

根据上表数据可知,变量之间具有较强的线性相关关系,求出的线性回归方程(系数精确到0.01).(参考公式:,其中;参考数据:

查看答案和解析>>

(本小题满分12分)袋子中有质地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲赢,否则算乙赢.记基本事件为,其中分别为甲、乙摸到的球的编号。

(1)列举出所有的基本事件,并求甲赢且编号的和为5的事件发生的概率;

(2)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平。(无详细解答过程,不给分)

(3)   如果请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性大?说明理由.

 

查看答案和解析>>

(本小题满分12分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:

编号

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81

已知甲厂生产的产品共有98件.

(I)求乙厂生产的产品数量;

(Ⅱ)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;

(Ⅲ)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望).

 

查看答案和解析>>

(本小题满分12分)

班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.

(1)如果按性别比例分层抽样,则样本中男、女生各有多少人;

(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;

物理成绩依次为:72,77,80,84,88,90,93,95,

①若规定80分(含80分)以上为良好,90分(含90分)以上为优秀,在良好的条件下,求两科均为优秀的概率;

②若这8位同学的数学、物理分数事实上对应下表:

学生编号

1

2

3

4

5

6

7

8

数学分数

60

65

70

75

80

85

90

95[来源:Z&xx&k.Com]

物理分数

72

77

80

84

88

90

93

95

 

 

 

 

根据上表数据可知,变量之间具有较强的线性相关关系,求出的线性回归方程(系数精确到0.01).(参考公式:,其中;参考数据:

 

查看答案和解析>>

(本小题满分12分)袋子中有质地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲赢,否则算乙赢.记基本事件为,其中分别为甲、乙摸到的球的编号。
(1)列举出所有的基本事件,并求甲赢且编号的和为5的事件发生的概率;
(2)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平。(无详细解答过程,不给分)
(3)  如果请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性大?说明理由.

查看答案和解析>>


同步练习册答案