已知函数: (1)求f(x)+f(2a-x)的值, (2)当f(x)的定义域为[a+,a+1]时.求f(x)的值域, (2)设函数g(x)=x2+|(x-a)f(x)| ,求g(x) 的最小值 . 查看更多

 

题目列表(包括答案和解析)

 (本小题满分14分)

已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.

(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;

(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.

①求证:x1>1>x2

②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

 

查看答案和解析>>

(本小题满分14分)

已知函数f(x)=log2.

(1)判断并证明f(x)的奇偶性;

(2)若关于x的方程f(x)=log2(x-k)有实根,求实数k的取值范围;

(3)问:方程f(x)=x+1是否有实根?如果有,设为x0,请求出一个长度

的区间(a,b),使x0∈(a,b);如果没有,请说明理由.

(注:区间(a,b)的长度为b-a)

 

查看答案和解析>>

(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>

(本小题满分14分)

已知函数f(x)=-x3+bx2+cx+bc

(1)若函数f(x)在x=1处有极值-,试确定bc的值;

(2)在(1)的条件下,曲线y=f(x)+m与x轴仅有一个交点,求实数m的取值范围;

(3)记g(x)=|fx)|(-1≤x≤1)的最大值为M,若M≥k对任意的bc恒成立,试求k的取值范围.

  (参考公式:x3-3bx2+4b3=(x+b)(x2b)2)

查看答案和解析>>

(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>


同步练习册答案