设.为常数.:把平面上任意一点 (.)映射为函数 (1)证明:不存在两个不同点对应于同一个函数, (2)证明:当时..这里t为常数, (3)对于属于M的一个固定值.得.在映射F的作用下.M1作为象.求其原象.并说明它是什么图象? 答案: 查看更多

 

题目列表(包括答案和解析)

设a、b为常数,M={f(x)|f(x)=acosx+bsinx};F:把平面上任意一点(a,b)映射为函数acosx+bsinx.

(1)证明:不存在两个不同点对应于同一个函数;

(2)证明:当f0(x)∈M时,f1(x)=f0(x+t)∈M,这里t为常数;

(3)对于属于M的一个固定值f0(x),得M1={f0(x+t),t∈R},在映射F的作用下,M1作为象,求其原象,并说明它是什么图象?

查看答案和解析>>

设a、b为常数,M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一点(a,b)映射为函数acosx+bsinx.
(1)证明:对F不存在两个不同点对应于同一个函数;
(2)证明:当f0(x)∈M时,f1(x)=f0(x+t)∈M,这里t为常数;
(3)对于属于M的一个固定值f0(x),得M1={f0(x+t)|t∈R},若映射F的作用下点(m,n)的象属于M1,问:由所有符合条件的点(m,n)构成的图形是什么?

查看答案和解析>>

设a、b为常数,M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一点(a,b)映射为函数acosx+bsinx.
(1)证明:对F不存在两个不同点对应于同一个函数;
(2)证明:当f(x)∈M时,f1(x)=f(x+t)∈M,这里t为常数;
(3)对于属于M的一个固定值f(x),得M1={f(x+t)|t∈R},若映射F的作用下点(m,n)的象属于M1,问:由所有符合条件的点(m,n)构成的图形是什么?

查看答案和解析>>

设a、b为常数,M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一点(a,b)映射为函数acosx+bsinx.
(1)证明:对F不存在两个不同点对应于同一个函数;
(2)证明:当f0(x)∈M时,f1(x)=f0(x+t)∈M,这里t为常数;
(3)对于属于M的一个固定值f0(x),得M1={f0(x+t)|t∈R},若映射F的作用下点(m,n)的象属于M1,问:由所有符合条件的点(m,n)构成的图形是什么?

查看答案和解析>>

给出4个命题:
(1)设椭圆长轴长度为2a(a>0),椭圆上的一点P到一个焦点的距离是数学公式,P到一条准线的距离是数学公式,则此椭圆的离心率为数学公式
(2)若椭圆数学公式(a≠b,且a,b为正的常数)的准线上任意一点到两焦点的距离分别为d1,d2,则|d12-d22|为定值.
(3)如果平面内动点M到定直线l的距离与M到定点F的距离之比大于1,那么动点M的轨迹是双曲线.
(4)过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线准线上的射影分别为A1、B1,则FA1⊥FB1
其中正确命题的序号依次是________.(把你认为正确的命题序号都填上)

查看答案和解析>>


同步练习册答案