解:设圆的圆心为P(a,b),半径为r.则P到x轴.y轴的距离分别为|b|.|a|.由题设知圆P截x轴所得劣弧所对圆心角为90°,故圆P截x轴所得弦长为r=2b. ∴r2=2b2 ①又由y轴截圆得弦长为2.∴r2=a2+1 ② 由①.②知2b2-a2=1.又圆心到l:x-2y=0的距离d=,∴5d2=(a-2b)2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=2b2-a2=1.当且仅当a=b时“= 号成立. ∴当a=b时.d最小为.由得或由①得r=. ∴(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2为所求. 查看更多

 

题目列表(包括答案和解析)

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

(选修4—1几何证明选讲)已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于F(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连结AC

求证:(1)   (2)AC2=AE·AF

23(选修4—4坐标系与参数方程选讲)以直角坐标系的原点O为极点,轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线经过点P(1,1),倾斜角

(I)写出直线参数方程;

(II)设与圆相交于两点A、B,求点P到A、B两点的距离之积.

24.选修4-5:不等式选讲

设函数

(Ⅰ)求不等式的解集;

(Ⅱ),使,求实数的取值范围.

查看答案和解析>>


同步练习册答案